Cramer-Rao bounds and maximum likelihood estimation for random amplitude phase-modulated signals

被引:43
|
作者
Ghogho, M [1 ]
Nandi, AK
Swami, A
机构
[1] Univ Strathclyde, Dept Elect & Elect Engn, Signal Proc Div, Glasgow G1 1XW, Lanark, Scotland
[2] Univ Liverpool, Dept Elect Engn & Elect, Liverpool L69 3BX, Merseyside, England
[3] USA, Res Lab, Adelphi, MD 20783 USA
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1109/78.796427
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The problem of estimating the phase parameters of a phase-modulated signal in the presence of colored multiplicative noise (random amplitude modulation) and additive white noise (both Gaussian) is addressed, Closed-form expressions for the exact and large-sample Cramer-Rao Bounds (CRB) are derived, It is shown that the CRB is significantly affected by the color of the modulating process when the signal-to-noise ratio (SNR) or the intrinsic SNR is small. Maximum likelihood type estimators that ignore the noise color and optimize a criterion with respect to only the phase parameters are proposed, These estimators are shown to be equivalent to the nonlinear least squares estimators, which consist of matching the squared observations with a constant amplitude phase-modulated signal when the mean of the multiplicative noise is forced to zero. Closed-form expressions are derived for the efficiency of these estimators and are verified via simulations.
引用
收藏
页码:2905 / 2916
页数:12
相关论文
共 50 条
  • [41] ON CRAMER-RAO LOWER BOUNDS WITH RANDOM EQUALITY CONSTRAINTS
    Prevost, C.
    Chaumette, E.
    Usevich, K.
    Brie, D.
    Comon, P.
    2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 5355 - 5359
  • [42] Cramer-Rao Bounds for a Coupled Mixture of Polynomial Phase and Sinusoidal FM Signals
    Wang, Pu
    Orlik, Philip V.
    Sadamoto, Kota
    Tsujita, Wataru
    Sawa, Yoshitsugu
    2018 IEEE 10TH SENSOR ARRAY AND MULTICHANNEL SIGNAL PROCESSING WORKSHOP (SAM), 2018, : 267 - 271
  • [43] Cramer-Rao Bounds for a Coupled Mixture of Polynomial Phase and Sinusoidal FM Signals
    Wang, Pu
    Orlik, Philip V.
    Sadamoto, Kota
    Tsujita, Wataru
    Sawa, Yoshitsugu
    IEEE SIGNAL PROCESSING LETTERS, 2017, 24 (06) : 746 - 750
  • [44] Cramer-Rao lower bounds and maximum likelihood timing synchronization for dirty template UWB communications
    Alhakim, Rshdee
    Raoof, Kosai
    Simeu, Emmanuel
    Serrestou, Youssef
    SIGNAL IMAGE AND VIDEO PROCESSING, 2013, 7 (04) : 741 - 757
  • [45] On the Cramer-Rao bound for polynomial phase signals
    McKilliam, Robby
    Pollok, Andre
    SIGNAL PROCESSING, 2014, 95 : 27 - 31
  • [46] Inertial Sensor Arrays, Maximum Likelihood, and Cramer-Rao Bound
    Skog, Isaac
    Nilsson, John-Olof
    Handel, Peter
    Nehorai, Arye
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2016, 64 (16) : 4218 - 4227
  • [47] CRAMER-RAO BOUNDS AND ESTIMATION OF THE PARAMETERS OF THE GUMBEL DISTRIBUTION
    CORSINI, G
    GINI, F
    GRECO, MV
    VERRAZZANI, L
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 1995, 31 (03) : 1202 - 1204
  • [48] Maximum-likelihood estimation, the Cramer-Rao bound, and the method of scoring with, parameter constraints
    Moore, Terrence J.
    Sadler, Brian M.
    Kozick, Richard J.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2008, 56 (03) : 895 - 908
  • [49] CRAMER-RAO BOUNDS FOR THE ESTIMATION OF MEANS IN A CLUSTERING PROBLEM
    PERLOVSKY, LI
    PATTERN RECOGNITION LETTERS, 1988, 8 (01) : 1 - 3
  • [50] Intrinsic Cramer-Rao bounds and subspace estimation accuracy
    Smith, ST
    SAM 2000: PROCEEDINGS OF THE 2000 IEEE SENSOR ARRAY AND MULTICHANNEL SIGNAL PROCESSING WORKSHOP, 2000, : 489 - 493