A perturbation-based framework for link prediction via non-negative matrix factorization

被引:23
|
作者
Wang, Wenjun [1 ]
Cai, Fei [1 ,2 ]
Jiao, Pengfei [1 ]
Pan, Lin [3 ]
机构
[1] Tianjin Univ, Sch Comp Sci & Technol, Tianjin 300350, Peoples R China
[2] Shandong Jianzhu Univ, Sch Surveying & Geoinformat, Jinan 250101, Peoples R China
[3] Tianjin Univ, Sch Marine Sci & Technol, Tianjin 300072, Peoples R China
来源
SCIENTIFIC REPORTS | 2016年 / 6卷
关键词
D O I
10.1038/srep38938
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Many link prediction methods have been developed to infer unobserved links or predict latent links based on the observed network structure. However, due to network noises and irregular links in real network, the performances of existed methods are usually limited. Considering random noises and irregular links, we propose a perturbation-based framework based on Non-negative Matrix Factorization to predict missing links. We first automatically determine the suitable number of latent features, which is inner rank in NMF, by Colibri method. Then, we perturb training set of a network by perturbation sets many times and get a series of perturbed networks. Finally, the common basis matrix and coefficients matrix of these perturbed networks are obtained via NMF and form similarity matrix of the network for link prediction. Experimental results on fifteen real networks show that the proposed framework has competitive performances compared with state-of-the-art link prediction methods. Correlations between the performances of different methods and the statistics of networks show that those methods with good precisions have similar consistence.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Non-negative Matrix Factorization: A Survey
    Gan, Jiangzhang
    Liu, Tong
    Li, Li
    Zhang, Jilian
    COMPUTER JOURNAL, 2021, 64 (07): : 1080 - 1092
  • [32] Collaborative Non-negative Matrix Factorization
    Benlamine, Kaoutar
    Grozavu, Nistor
    Bennani, Younes
    Matei, Basarab
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2019: TEXT AND TIME SERIES, PT IV, 2019, 11730 : 655 - 666
  • [33] INFINITE NON-NEGATIVE MATRIX FACTORIZATION
    Schmidt, Mikkel N.
    Morup, Morten
    18TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO-2010), 2010, : 905 - 909
  • [34] Non-negative Matrix Factorization for EEG
    Jahan, Ibrahim Salem
    Snasel, Vaclav
    2013 INTERNATIONAL CONFERENCE ON TECHNOLOGICAL ADVANCES IN ELECTRICAL, ELECTRONICS AND COMPUTER ENGINEERING (TAEECE), 2013, : 183 - 187
  • [35] Algorithms for non-negative matrix factorization
    Lee, DD
    Seung, HS
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 13, 2001, 13 : 556 - 562
  • [36] Non-negative matrix factorization with α-divergence
    Cichocki, Andrzej
    Lee, Hyekyoung
    Kim, Yong-Deok
    Choi, Seungjin
    PATTERN RECOGNITION LETTERS, 2008, 29 (09) : 1433 - 1440
  • [37] Dropout non-negative matrix factorization
    He, Zhicheng
    Liu, Jie
    Liu, Caihua
    Wang, Yuan
    Yin, Airu
    Huang, Yalou
    KNOWLEDGE AND INFORMATION SYSTEMS, 2019, 60 (02) : 781 - 806
  • [38] Non-Negative Matrix Factorization with Constraints
    Liu, Haifeng
    Wu, Zhaohui
    PROCEEDINGS OF THE TWENTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE (AAAI-10), 2010, : 506 - 511
  • [39] Stretched non-negative matrix factorization
    Gu, Ran
    Rakita, Yevgeny
    Lan, Ling
    Thatcher, Zach
    Kamm, Gabrielle E.
    O'Nolan, Daniel
    Mcbride, Brennan
    Wustrow, Allison
    Neilson, James R.
    Chapman, Karena W.
    Du, Qiang
    Billinge, Simon J. L.
    NPJ COMPUTATIONAL MATERIALS, 2024, 10 (01)
  • [40] Uniqueness of non-negative matrix factorization
    Laurberg, Hans
    2007 IEEE/SP 14TH WORKSHOP ON STATISTICAL SIGNAL PROCESSING, VOLS 1 AND 2, 2007, : 44 - 48