Efficient Acquisition Rules for Model-Based Approximate Bayesian Computation

被引:33
|
作者
Jarvenpaa, Marko [1 ]
Gutmann, Michael U. [2 ]
Pleska, Arijus [1 ]
Vehtari, Aki [1 ]
Marttinen, Pekka [1 ]
机构
[1] Aalto Univ, Dept Comp Sci, Helsinki Inst Informat Technol HIIT, Helsinki, Finland
[2] Univ Edinburgh, Sch Informat, Edinburgh, Midlothian, Scotland
来源
BAYESIAN ANALYSIS | 2019年 / 14卷 / 02期
基金
芬兰科学院;
关键词
approximate Bayesian computation; intractable likelihood; Gaussian processes; Bayesian optimisation; sequential experiment design; MONTE-CARLO; STATISTICAL-INFERENCE; REDUCTION;
D O I
10.1214/18-BA1121
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Approximate Bayesian computation (ABC) is a method for Bayesian inference when the likelihood is unavailable but simulating from the model is possible. However, many ABC algorithms require a large number of simulations, which can be costly. To reduce the computational cost, Bayesian optimisation (BO) and surrogate models such as Gaussian processes have been proposed. Bayesian optimisation enables one to intelligently decide where to evaluate the model next but common BO strategies are not designed for the goal of estimating the posterior distribution. Our paper addresses this gap in the literature. We propose to compute the uncertainty in the ABC posterior density, which is due to a lack of simulations to estimate this quantity accurately, and define a loss function that measures this uncertainty. We then propose to select the next evaluation location to minimise the expected loss. Experiments show that the proposed method often produces the most accurate approximations as compared to common BO strategies.
引用
收藏
页码:595 / 622
页数:28
相关论文
共 50 条
  • [21] Adaptive approximate Bayesian computation
    Beaumont, Mark A.
    Cornuet, Jean-Marie
    Marin, Jean-Michel
    Robert, Christian P.
    BIOMETRIKA, 2009, 96 (04) : 983 - 990
  • [22] Multifidelity Approximate Bayesian Computation
    Prescott, Thomas P.
    Baker, Ruth E.
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2020, 8 (01): : 114 - 138
  • [23] Handbook of Approximate Bayesian Computation
    Franks, Jordan J.
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2020, 115 (532) : 2100 - 2101
  • [24] A tutorial on approximate Bayesian computation
    Turner, Brandon M.
    Van Zandt, Trisha
    JOURNAL OF MATHEMATICAL PSYCHOLOGY, 2012, 56 (02) : 69 - 85
  • [25] Approximate Bayesian computation and MCMC
    Plagnol, V
    Tavaré, S
    MONTE CARLO AND QUASI-MONTE CARLO METHODS 2002, 2004, : 99 - 113
  • [26] Hierarchical Approximate Bayesian Computation
    Turner, Brandon M.
    Van Zandt, Trisha
    PSYCHOMETRIKA, 2014, 79 (02) : 185 - 209
  • [27] An Introduction to Approximate Bayesian Computation
    Nguyen, Hien D.
    STATISTICS AND DATA SCIENCE, RSSDS 2019, 2019, 1150 : 96 - 108
  • [28] A generic stochastic hybrid car-following model based on approximate Bayesian computation
    Jiang, Jiwan
    Zhou, Yang
    Wang, Xin
    Ahn, Soyoung
    TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES, 2024, 167
  • [29] Constructing summary statistics for approximate Bayesian computation: semi-automatic approximate Bayesian computation
    Fearnhead, Paul
    Prangle, Dennis
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2012, 74 : 419 - 474
  • [30] On Model-Based Evolutionary Computation
    L. Bull
    Soft Computing, 1999, 3 (2) : 76 - 82