Multi-Pose Multi-Target Tracking for Activity Understanding

被引:0
|
作者
Izadinia, Hamid [1 ]
Ramakrishna, Varun [2 ]
Kitani, Kris M. [2 ]
Huber, Daniel [2 ]
机构
[1] Univ Cent Florida, Orlando, FL 32816 USA
[2] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We evaluate the performance of a widely used tracking-by-detection and data association multi-target tracking pipeline applied to an activity-rich video dataset. In contrast to traditional work on multi-target pedestrian tracking where people are largely assumed to be upright, we use an activity-rich dataset that includes a wide range of body poses derived from actions such as picking up an object, riding a bike, digging with a shovel, and sitting down. For each step of the tracking pipeline, we identify key limitations and offer practical modifications that enable robust multi-target tracking over a range of activities. We show that the use of multiple posture-specific detectors and an appearance-based data association post-processing step can generate non-fragmented trajectories essential for holistic activity understanding.
引用
收藏
页码:385 / 390
页数:6
相关论文
共 50 条
  • [41] Tracklet association based multi-target tracking
    Songhao Zhu
    Zhe Shi
    Chengjian Sun
    Multimedia Tools and Applications, 2016, 75 : 9489 - 9506
  • [42] Towards Large Scale Multi-Target Tracking
    Ba-Ngu Vo
    Ba-Tuong Vo
    Reuter, Stephan
    Quang Lam
    Dietmayer, Klaus
    SENSORS AND SYSTEMS FOR SPACE APPLICATIONS VII, 2014, 9085
  • [43] Cooperative Multi-Target Tracking with MIMO Radar
    Zhang, Liang
    Chen, Dong
    Yang, Fan
    Tao, HaiJun
    Chen, WeiGuo
    2017 16TH INTERNATIONAL CONFERENCE ON OPTICAL COMMUNICATIONS & NETWORKS (ICOCN 2017), 2017,
  • [44] Information Consensus for Distributed Multi-Target Tracking
    Kamal, Ahmed T.
    Farrell, Jay A.
    Roy-Chowdhury, Amit K.
    2013 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2013, : 2403 - 2410
  • [45] A particle filter approach for multi-target tracking
    Ryu, HwangRyol
    Huber, Manfred
    2007 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS, VOLS 1-9, 2007, : 2759 - +
  • [46] Improved particle filters for multi-target tracking
    Maroulas, Vasileios
    Stinis, Panos
    JOURNAL OF COMPUTATIONAL PHYSICS, 2012, 231 (02) : 602 - 611
  • [47] Approximate Bayes multi-target tracking smoother
    Li, Quan-rui
    Qi, Bin
    Liang, Guo-long
    IET RADAR SONAR AND NAVIGATION, 2019, 13 (03): : 428 - 437
  • [48] Underwater multi-target tracking with particle filters
    Masmitja, I.
    Gomariz, S.
    Del Rio, J.
    Bouvet, P. J.
    Aguzzi, J.
    2018 OCEANS - MTS/IEEE KOBE TECHNO-OCEANS (OTO), 2018,
  • [49] On collaboration in a distributed multi-target tracking framework
    Onel, Tolga
    Ersoy, Cern
    Delic, Hakan
    2007 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, VOLS 1-14, 2007, : 3265 - +
  • [50] Multi-target tracking in a Test Range scenario
    Bhattacharya, Shrabani
    Raj, R. Appavu
    DEFENCE SCIENCE JOURNAL, 2007, 57 (03) : 343 - 348