Colored multipermutations and a combinatorial generalization of Worpitzky's identity

被引:0
|
作者
Engbers, John [1 ]
Pantone, Jay [1 ]
Stocker, Christopher [1 ]
机构
[1] Marquette Univ, Dept Math & Stat Sci, Milwaukee, WI 53201 USA
来源
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Worpitzky's identity, first presented in 1883, expresses n(p) in terms of the Eulerian numbers and binomial coefficients: n(p) = -Sigma(p-1)(i=0) < p i > (n+1 p). Pita-Ruiz recently defined numbers A(a,b,r)(p, i) implicitly to satisfy a generalized Worpitzky identity (an+b r)(p) = Sigma(rp)(i=0) A(a,b,r)(p, i)(n+rp-i rp), and asked whether there is a combinatorial interpretation of the numbers A(a,b,r)(p, i). We provide such a combinatorial interpretation by defining a notion of descents in colored multipermutations, and then proving that A(a,b),(r)(p, i) is equal to the number of colored multipermutations of {1(r), 2(r), ..., p(r)} with a colors and i weak descents. We use this to give combinatorial proofs of several identities involving A(a,b,r)(p, i), including the aforementioned generalized Worpitzky identity.
引用
收藏
页码:335 / 347
页数:13
相关论文
共 50 条
  • [31] COMBINATORIAL GENERALIZATION OF POLYTOPES
    TODD, MJ
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1976, 20 (03) : 229 - 242
  • [32] Worpitzky's Theorem on continued fractions
    Beardon, AF
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2001, 131 (1-2) : 143 - 148
  • [33] On generalization of a Ramanujan’s theta function identity
    Harshitha Kempainahundi Nanjundegowda
    Boletín de la Sociedad Matemática Mexicana, 2022, 28
  • [34] An elliptic generalization of Schur's Pfaffian identity
    Okada, Soichi
    ADVANCES IN MATHEMATICS, 2006, 204 (02) : 530 - 538
  • [35] On generalization of a Ramanujan's theta function identity
    Nanjundegowda, Harshitha Kempainahundi
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2022, 28 (02):
  • [36] A generalization of Newton's identity and Macdonald functions
    Cai, Tommy Wuxing
    Jing, Naihuan
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2014, 125 : 342 - 356
  • [37] A generalization of Menon's identity to higher exponent
    Li, Yan
    Kim, Daeyeoul
    Qiao, Rui
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2019, 94 (3-4): : 467 - 475
  • [38] A generalization of Arai-Carlitz's identity
    Wang, Yujie
    Ji, Chungang
    RAMANUJAN JOURNAL, 2020, 53 (03): : 585 - 594
  • [39] A generalization of Menon's identity with Dirichlet characters
    Li, Yan
    Hu, Xiaoyu
    Kim, Daeyeoul
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2018, 14 (10) : 2631 - 2639
  • [40] COMBINATORIAL IDENTITY
    PRATT, JW
    AMERICAN MATHEMATICAL MONTHLY, 1977, 84 (09): : 742 - 743