Small circulant complex Hadamard matrices of Butson type

被引:6
|
作者
Hiranandani, Gaurush [1 ]
Schlenker, Jean-Marc [2 ]
机构
[1] Indian Inst Technol, Dept Math & Stat, Kanpur 208016, Uttar Pradesh, India
[2] Univ Luxembourg, Math Res Unit, BLG, L-1359 Luxembourg, Luxembourg
关键词
D O I
10.1016/j.ejc.2015.05.010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the circulant complex Hadamard matrices of order n whose entries are ith roots of unity. For n = l prime we prove that the only such matrix, up to equivalence, is the Fourier matrix, while for n = p + q, l = pq with p, q distinct primes there is no such matrix. We then provide a list of equivalence classes of such matrices, for small values of n, l. (C) 2015 Published by Elsevier Ltd.
引用
收藏
页码:306 / 314
页数:9
相关论文
共 50 条
  • [31] Phased unitary Golay pairs, Butson Hadamard matrices and a conjecture of Ito's
    Egan, Ronan
    DESIGNS CODES AND CRYPTOGRAPHY, 2019, 87 (01) : 67 - 74
  • [32] Cocyclic two-circulant core Hadamard matrices
    Santiago Barrera Acevedo
    Padraig Ó Catháin
    Heiko Dietrich
    Journal of Algebraic Combinatorics, 2022, 55 : 201 - 215
  • [33] Cocyclic two-circulant core Hadamard matrices
    Barrera Acevedo, Santiago
    Cathain, Padraig O.
    Dietrich, Heiko
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2022, 55 (01) : 201 - 215
  • [34] Heuristic algorithms for Hadamard matrices with two circulant cores
    Chiarandini, M.
    Kotsireas, I. S.
    Koukouvinos, C.
    Paquete, L.
    THEORETICAL COMPUTER SCIENCE, 2008, 407 (1-3) : 274 - 277
  • [35] New restrictions on possible orders of circulant Hadamard matrices
    Ka Hin Leung
    Bernhard Schmidt
    Designs, Codes and Cryptography, 2012, 64 : 143 - 151
  • [36] New restrictions on possible orders of circulant Hadamard matrices
    Leung, Ka Hin
    Schmidt, Bernhard
    DESIGNS CODES AND CRYPTOGRAPHY, 2012, 64 (1-2) : 143 - 151
  • [37] Antipodal Polygons and Half-Circulant Hadamard Matrices
    Medianik, A. I.
    JOURNAL OF MATHEMATICAL PHYSICS ANALYSIS GEOMETRY, 2010, 6 (01) : 56 - 72
  • [38] Phased unitary Golay pairs, Butson Hadamard matrices and a conjecture of Ito’s
    Ronan Egan
    Designs, Codes and Cryptography, 2019, 87 : 67 - 74
  • [39] Constructions of Butson Hadamard matrices invariant under Abelian p-groups
    Schmidt, Bernhard
    Wong, Dai Quan
    Xiang, Qing
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2021, 181
  • [40] Cocyclic Butson Hadamard matrices and codes over Zn via the trace map
    Pinnawala, N.
    Rao, A.
    FINITE FIELDS AND APPLICATIONS, 2008, 461 : 213 - 228