TOLERANCE PROBLEMS FOR GENERALIZED EIGENVECTORS OF INTERVAL FUZZY MATRICES

被引:0
|
作者
Gavalec, Martin [1 ]
Myskova, Helena [2 ]
Plavka, Jan [2 ]
Ponce, Daniela [1 ]
机构
[1] Univ Hradec Kralove, Fac Informat & Management, Rokitanskeho 62, Hradec Kralove 50003, Czech Republic
[2] Tech Univ Kosice, Fac Elect Engn & Informat, Nemcovej 32, Kosice 04200, Slovakia
关键词
interval generalized eigenvector; fuzzy matrix; ROBUSTNESS; EIGENPROBLEM;
D O I
10.14736/kyb-2022-5-0760
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Fuzzy algebra is a special type of algebraic structure in which classical addition and multiplication are replaced by maximum and minimum (denoted circle plus and circle times, respectively). The eigenproblem is the search for a vector x (an eigenvector) and a constant lambda (an eigenvalue) such that A circle times x = lambda circle times x, where A is a given matrix. This paper investigates a generalization of the eigenproblem in fuzzy algebra. We solve the equation A circle times x = lambda circle times B circle times x with given matrices A;B and unknown constant lambda and vector x. Generalized eigenvectors have interesting and useful properties in the various computational tasks with inexact (interval) matrix and vector inputs. This paper studies the properties of generalized interval eigenvectors of interval matrices. Three types of generalized interval eigenvectors: strongly tolerable generalized eigenvectors, tolerable generalized eigenvectors and weakly tolerable generalized eigenvectors are proposed and polynomial procedures for testing the obtained equivalent conditions are presented.
引用
收藏
页码:760 / 778
页数:19
相关论文
共 50 条
  • [21] Computation of multiple eigenvalues and generalized eigenvectors for matrices dependent on parameters
    Mailybaev, Alexei A.
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2006, 13 (05) : 419 - 436
  • [22] EA/AE-Eigenvectors of Interval Max-Min Matrices
    Gavalec, Martin
    Plavka, Jan
    Ponce, Daniela
    MATHEMATICS, 2020, 8 (06)
  • [23] Interval Valued Secondary k-Range Symmetric Fuzzy Matrices with Generalized Inverses
    Prathab, H.
    Ramalingam, N.
    Janaki, E.
    Bobin, A.
    Kamalakannan, V.
    Anandhkumar, M.
    IAENG International Journal of Computer Science, 2024, 51 (12) : 2051 - 2066
  • [24] On generalized inverses of fuzzy matrices
    Majumder, DD
    Rao, PSSNVP
    IETE JOURNAL OF RESEARCH, 1998, 44 (4-5) : 149 - 159
  • [25] TRANSITIVITY OF GENERALIZED FUZZY MATRICES
    HASHIMOTO, H
    FUZZY SETS AND SYSTEMS, 1985, 17 (01) : 83 - 90
  • [26] On transitivity of generalized fuzzy matrices
    Tan, Yi-Jia
    FUZZY SETS AND SYSTEMS, 2013, 210 : 69 - 88
  • [27] GENERALIZED REGULAR FUZZY MATRICES
    Meenakshi, A. R.
    Jenita, P.
    IRANIAN JOURNAL OF FUZZY SYSTEMS, 2011, 8 (02): : 133 - 141
  • [28] On nilpotency of generalized fuzzy matrices
    Tan, Yi-Jia
    FUZZY SETS AND SYSTEMS, 2010, 161 (16) : 2213 - 2226
  • [29] On Generalized Inverses of Fuzzy Matrices
    Majumder, Dwijesh Dutta
    Rao, P.S.S.N.V.P.
    IETE Journal of Research, 44 (4--5): : 149 - 159
  • [30] On generalized fuzzy matrices with periods
    Tan, Yi-Jia
    FUZZY SETS AND SYSTEMS, 2011, 172 (01) : 87 - 103