The Hodge ring of Kahler manifolds

被引:14
|
作者
Kotschick, D. [1 ]
Schreieder, S. [1 ,2 ]
机构
[1] LMU Munchen, Math Inst, D-80333 Munich, Germany
[2] Univ Cambridge Trinity Coll, Cambridge CB2 1TQ, England
关键词
Hodge numbers; Chern numbers; Hirzebruch problem; CHERN NUMBERS;
D O I
10.1112/S0010437X12000759
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We determine the structure of the Hodge ring, a natural object encoding the Hodge numbers of all compact Kahler manifolds. As a consequence of this structure, there are no unexpected relations among the Hodge numbers, and no essential differences between the Hodge numbers of smooth complex projective varieties and those of arbitrary Kahler manifolds. The consideration of certain natural ideals in the Hodge ring allows us to determine exactly which linear combinations of Hodge numbers are birationally invariant, and which are topological invariants. Combining the Hodge and unitary bordism rings, we are also able to treat linear combinations of Hodge and Chern numbers. In particular, this leads to a complete solution of a classical problem of Hirzebruch's.
引用
收藏
页码:637 / 657
页数:21
相关论文
共 50 条
  • [41] GENERALIZATION OF SCHURS THEOREM OF KAHLER AND NEARLY KAHLER MANIFOLDS
    STANILOV, G
    DOKLADI NA BOLGARSKATA AKADEMIYA NA NAUKITE, 1976, 29 (12): : 1713 - 1719
  • [42] Quaternionic Kahler metrics associated with special Kahler manifolds
    Alekseevsky, D. V.
    Cortes, V.
    Dyckmanns, M.
    Mohaupt, T.
    JOURNAL OF GEOMETRY AND PHYSICS, 2015, 92 : 271 - 287
  • [43] Kahler and para-Kahler curvature Weyl manifolds
    Gilkey, Peter
    Nikcevic, Stana
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2012, 80 (3-4): : 369 - 384
  • [44] The Schwarzian derivative in Kahler manifolds
    龚昇
    余其煌
    Science China Mathematics, 1995, (09) : 1033 - 1048
  • [45] COHERENT STATES AND KAHLER MANIFOLDS
    RAWNSLEY, JH
    QUARTERLY JOURNAL OF MATHEMATICS, 1977, 28 (112): : 403 - 415
  • [46] EXTRINSIC SPHERES IN KAHLER MANIFOLDS
    CHEN, BV
    MICHIGAN MATHEMATICAL JOURNAL, 1976, 23 (04) : 327 - 330
  • [47] Trees and tensors on Kahler manifolds
    Xu, Hao
    Yau, Shing-Tung
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2013, 44 (02) : 151 - 168
  • [48] Ricci flow on Kahler manifolds
    Chen, XX
    Tian, G
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2001, 332 (03): : 245 - 248
  • [49] CONTACT HYPERSURFACES IN KAHLER MANIFOLDS
    Berndt, Urgen
    Suh, Young Jin
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 143 (06) : 2637 - 2649
  • [50] The Schwarzian derivative in Kahler manifolds
    龚昇
    余其煌
    ScienceinChina,SerA., 1995, Ser.A.1995 (09) : 1033 - 1048