Performance Evaluation of Iterative Image Reconstruction Algorithms for Non-Sparse Object Reconstruction

被引:0
|
作者
Singh, Santosh [1 ]
机构
[1] Siemens Corp Technol India, Bangalore, Karnataka, India
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Partially regularized technique is an extension based on interval constraint of minimum norm solution. Such techniques have shown good results on problems like Missing Data Recovery (MDR). The proposed use of partially regularized technique for the computer tomography (CT) image reconstruction is to investigate if the MDR concept can be used for few view projection data acquisition scenario. The motivation for such an implementation is to establish a concept of MDR in sparse CT image reconstruction. In the present initial conceptual work, the sparse CT image reconstruction means highly under-sampled data.
引用
收藏
页码:3245 / 3247
页数:3
相关论文
共 50 条
  • [41] PARALLEL COMPUTING WITH BLOCK-ITERATIVE IMAGE-RECONSTRUCTION ALGORITHMS
    ZENIOS, SA
    CENSOR, Y
    APPLIED NUMERICAL MATHEMATICS, 1991, 7 (05) : 399 - 415
  • [42] Iterative Image Reconstruction for CT
    Fessler, J.
    MEDICAL PHYSICS, 2011, 38 (06)
  • [43] Development and Evaluation of Iterative CT Image Reconstruction in Cylindrical Image Coordinate
    Rao, W.
    Pham, R.
    Kandlakunta, P.
    Anastasio, M.
    Zhang, T.
    MEDICAL PHYSICS, 2017, 44 (06)
  • [44] LOFAR sparse image reconstruction
    Garsden, H.
    Girard, J. N.
    Starck, J. L.
    Corbel, S.
    Tasse, C.
    Woiselle, A.
    McKean, J. P.
    van Amesfoort, A. S.
    Anderson, J.
    Avruch, I. M.
    Beck, R.
    Bentum, M. J.
    Best, P.
    Breitling, F.
    Broderick, J.
    Brueggen, M.
    Butcher, H. R.
    Ciardi, B.
    de Gasperin, F.
    de Geus, E.
    de Vos, M.
    Duscha, S.
    Eisloeffel, J.
    Engels, D.
    Falcke, H.
    Fallows, R. A.
    Fender, R.
    Ferrari, C.
    Frieswijk, W.
    Garrett, M. A.
    Griessmeier, J.
    Gunst, A. W.
    Hassall, T. E.
    Heald, G.
    Hoeft, M.
    Hoerandel, J.
    van der Horst, A.
    Juette, E.
    Karastergiou, A.
    Kondratiev, V. I.
    Kramer, M.
    Kuniyoshi, M.
    Kuper, G.
    Mann, G.
    Markoff, S.
    McFadden, R.
    McKay-Bukowski, D.
    Mulcahy, D. D.
    Munk, H.
    Norden, M. J.
    ASTRONOMY & ASTROPHYSICS, 2015, 575
  • [45] Challenges in Sparse Image Reconstruction
    Kiran, S. Shashi
    Suresh, K., V
    INTERNATIONAL JOURNAL OF IMAGE AND GRAPHICS, 2021, 21 (03)
  • [46] Low dose CT image statistical iterative reconstruction algorithms based on off-line dictionary sparse representation
    Zhang, Haiyan
    Zhang, Liyi
    Sun, Yunshan
    Zhang, Jingyu
    Chen, Lei
    OPTIK, 2017, 131 : 785 - 797
  • [47] Fast iterative image reconstruction using sparse matrix factorization with GPU acceleration
    Zhou, Jian
    Qi, Jinyi
    MEDICAL IMAGING 2011: PHYSICS OF MEDICAL IMAGING, 2011, 7961
  • [48] Performance evaluation of relaxed block-iterative algorithms for 3-D PET reconstruction
    Fukano, A
    Nakayama, T
    Kudo, H
    2004 IEEE NUCLEAR SCIENCE SYMPOSIUM CONFERENCE RECORD, VOLS 1-7, 2004, : 2830 - 2834
  • [49] Performance evaluation of iterative reconstruction algorithms for achieving CT radiation dose reduction - a phantom study
    Dodge, Cristina T.
    Tamm, Eric P.
    Cody, Dianna D.
    Liu, Xinming
    Jensen, Corey T.
    Wei, Wei
    Kundra, Vikas
    Rong, X. John
    JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, 2016, 17 (02): : 511 - 531
  • [50] Performance evaluation of iterative tomographic algorithms applied to reconstruction of a three-dimensional temperature field
    Subbarao, PMV
    Munshi, P
    Muralidhar, K
    NUMERICAL HEAT TRANSFER PART B-FUNDAMENTALS, 1997, 31 (03) : 347 - 372