Extension of belief functions to infinite-valued events

被引:6
|
作者
Kroupa, Tomas [1 ]
机构
[1] ASCR, Inst Informat Theory & Automat, Prague 18208, Czech Republic
关键词
Belief function; MV-algebra; Choquet integral; Lukasiewicz logic; Mobius transform;
D O I
10.1007/s00500-012-0836-2
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We generalise belief functions to many-valued events which are represented by elements of Lindenbaum algebra of infinite-valued Aukasiewicz propositional logic. Our approach is based on mass assignments used in the Dempster-Shafer theory of evidence. A generalised belief function is totally monotone and it has Choquet integral representation with respect to a unique belief measure on Boolean events.
引用
收藏
页码:1851 / 1861
页数:11
相关论文
共 50 条
  • [21] Consequence and complexity in infinite-valued logic: a survey
    Marra, V
    Mundici, D
    ISMVL 2002: 32ND IEEE INTERNATIONAL SYMPOSIUM ON MULTIPLE-VALUED LOGIC, PROCEEDINGS, 2002, : 104 - 114
  • [22] Finite Satisfiability in Infinite-Valued Lukasiewicz Logic
    Schockaert, Steven
    Janssen, Jeroen
    Verrmeir, Dirk
    De Cock, Martine
    SCALABLE UNCERTAINTY MANAGEMENT, PROCEEDINGS, 2009, 5785 : 240 - +
  • [23] An Infinite-Valued Grounded Labelling for Abstract Argumentation Frameworks
    Alcantara, Joao
    Sa, Samy
    33RD ANNUAL ACM SYMPOSIUM ON APPLIED COMPUTING, 2018, : 903 - 910
  • [24] Resolution and model building in the infinite-valued calculus of Lukasiewicz
    Mundici, D
    Olivetti, N
    THEORETICAL COMPUTER SCIENCE, 1998, 200 (1-2) : 335 - 366
  • [25] A CONSTRUCTIVE PROOF OF MCNAUGHTONS THEOREM IN INFINITE-VALUED LOGIC
    MUNDICI, D
    JOURNAL OF SYMBOLIC LOGIC, 1994, 59 (02) : 596 - 602
  • [26] On the infinite-valued Łukasiewicz logic that preserves degrees of truth
    Josep Maria Font
    Àngel J. Gil
    Antoni Torrens
    Ventura Verdú
    Archive for Mathematical Logic, 2006, 45 : 839 - 868
  • [27] On the infinite-valued Lukasiewicz logic that preserves degrees of truth
    Font, Josep Maria
    Gil, Angel J.
    Torrens, Antoni
    Verdu, Ventura
    ARCHIVE FOR MATHEMATICAL LOGIC, 2006, 45 (07) : 839 - 868
  • [28] Decidable and undecidable prime theories in infinite-valued logic
    Mundici, D
    Panti, G
    ANNALS OF PURE AND APPLIED LOGIC, 2001, 108 (1-3) : 269 - 278
  • [29] Resolution and model building in the infinite-valued calculus of Lukasiewicz
    Department of Computer Science, University of Milan, Via Comelico 39-41, 20135 Milan, Italy
    不详
    Theor Comput Sci, 1-2 (335-366):
  • [30] QUANTUM LOGIC AS PARTIAL INFINITE-VALUED LUKASIEWICZ LOGIC
    PYKACZ, J
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1995, 34 (08) : 1697 - 1710