Deep learning as phase retrieval tool for CARS spectra

被引:42
|
作者
Houhou, Rola [1 ,2 ,3 ]
Barman, Parijat [3 ]
Schmitt, Micheal [1 ,2 ]
Meyer, Tobias [1 ,2 ,3 ]
Popp, Juergen [1 ,2 ,3 ]
Bocklitz, Thomas [1 ,2 ,3 ]
机构
[1] Friedrich Schiller Univ, Inst Phys Chem, Helmholtzweg 4, D-07743 Jena, Germany
[2] Friedrich Schiller Univ, Abbe Ctr Photon, Helmholtzweg 4, D-07743 Jena, Germany
[3] Leibniz Inst Photon Technol, Albert Einstein Str 9, D-07745 Jena, Germany
关键词
MAXIMUM-ENTROPY MODEL; RAMAN-SCATTERING; NEURAL-NETWORKS; COHERENT; SPECTROSCOPY; TIME;
D O I
10.1364/OE.390413
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Finding efficient and reliable methods for the extraction of the phase in optical measurements is challenging and has been widely investigated. Although sophisticated optical settings, e.g. holography, measure directly the phase, the use of algorithmic methods has gained attention due to its efficiency, fast calculation and easy setup requirements. We investigated three phase retrieval methods: the maximum entropy technique (MEM), the Kramers-Kronig relation (KK), and for the first time deep learning using the Long Short-Term Memory network (LSTM). LSTM shows superior results for the phase retrieval problem of coherent anti-Stokes Raman spectra in comparison to MEM and KK. Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License.
引用
收藏
页码:21002 / 21024
页数:23
相关论文
共 50 条
  • [21] Deep phase retrieval: Analyzing over-parameterization in phase retrieval
    Yu, Qi
    Huang, Jun-Jie
    Zhu, Jubo
    Dai, Wei
    Dragotti, Pier Luigi
    SIGNAL PROCESSING, 2021, 180
  • [22] Phase Retrieval for Fourier THz Imaging with Physics-Informed Deep Learning
    Xiang, Mingjun
    Wang, Lingxiao
    Yuan, Hui
    Zhou, Kai
    Roskos, Hartmut G.
    2022 47TH INTERNATIONAL CONFERENCE ON INFRARED, MILLIMETER AND TERAHERTZ WAVES (IRMMW-THZ 2022), 2022,
  • [23] PhaseGAN: a deep-learning phase-retrieval approach for unpaired datasets
    Zhang, Yuhe
    Noack, Mike Andreas
    Vagovic, Patrik
    Fezzaa, Kamel
    Garcia-Moreno, Francisco
    Ritschel, Tobias
    Villanueva-Perez, Pablo
    OPTICS EXPRESS, 2021, 29 (13) : 19593 - 19604
  • [24] Unsupervised Deep Learning for Phase Retrieval via Teacher-Student Distillation
    Quan, Yuhui
    Chen, Zhile
    Pang, Tongyao
    Ji, Hui
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 2, 2023, : 2128 - 2136
  • [25] Phase retrieval based on deep learning with bandpass filtering in holographic data storage
    Fan, Rongquan
    Hao, Jianying
    Chen, Ruixian
    Wang, Jinyu
    Lin, Yongkun
    Jin, Junchao
    Yang, Rupeng
    Zheng, Xiaoqing
    Wang, Kun
    Lin, Dakui
    Lin, Xiao
    Tan, Xiaodi
    OPTICS EXPRESS, 2024, 32 (03) : 4498 - 4510
  • [26] Phase retrieval combined with the deep learning denoising method in holographic data storage
    Hao, Jianying
    Lin, Xiao
    Chen, Ruixian
    Lin, Yongkun
    Liu, Hongjie
    Song, Haiyang
    Lin, Dakui
    Tan, Xiaodi
    OPTICS CONTINUUM, 2022, 1 (01): : 51 - 62
  • [27] Lensless phase retrieval based on deep learning used in holographic data storage
    Hao, Jianying
    Lin, Xiao
    Lin, Yongkun
    Song, Haiyang
    Chen, Ruixian
    Chen, Mingyong
    Wang, Kun
    Tan, Xiaodi
    OPTICS LETTERS, 2021, 46 (17) : 4168 - 4171
  • [28] Ptychographic phase retrieval via a deep-learning-assisted iterative algorithm
    Yamada, Koki
    Akaishi, Natsuki
    Yatabe, Kohei
    Takayama, Yuki
    Journal of Applied Crystallography, 1600, 57 : 1323 - 1335
  • [29] Untrained deep learning-based phase retrieval for fringe projection profilometry
    Yu, Haotian
    Chen, Xiaoyu
    Huang, Ruobing
    Bai, Lianfa
    Zheng, Dongliang
    Han, Jing
    OPTICS AND LASERS IN ENGINEERING, 2023, 164
  • [30] Supervised dual tight frame learning with deep thresholding network for phase retrieval
    Shi, Baoshun
    Lian, Qiusheng
    Su, Yueming
    IET IMAGE PROCESSING, 2022, 16 (10) : 2752 - 2758