Deep learning as phase retrieval tool for CARS spectra

被引:42
|
作者
Houhou, Rola [1 ,2 ,3 ]
Barman, Parijat [3 ]
Schmitt, Micheal [1 ,2 ]
Meyer, Tobias [1 ,2 ,3 ]
Popp, Juergen [1 ,2 ,3 ]
Bocklitz, Thomas [1 ,2 ,3 ]
机构
[1] Friedrich Schiller Univ, Inst Phys Chem, Helmholtzweg 4, D-07743 Jena, Germany
[2] Friedrich Schiller Univ, Abbe Ctr Photon, Helmholtzweg 4, D-07743 Jena, Germany
[3] Leibniz Inst Photon Technol, Albert Einstein Str 9, D-07745 Jena, Germany
关键词
MAXIMUM-ENTROPY MODEL; RAMAN-SCATTERING; NEURAL-NETWORKS; COHERENT; SPECTROSCOPY; TIME;
D O I
10.1364/OE.390413
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Finding efficient and reliable methods for the extraction of the phase in optical measurements is challenging and has been widely investigated. Although sophisticated optical settings, e.g. holography, measure directly the phase, the use of algorithmic methods has gained attention due to its efficiency, fast calculation and easy setup requirements. We investigated three phase retrieval methods: the maximum entropy technique (MEM), the Kramers-Kronig relation (KK), and for the first time deep learning using the Long Short-Term Memory network (LSTM). LSTM shows superior results for the phase retrieval problem of coherent anti-Stokes Raman spectra in comparison to MEM and KK. Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License.
引用
收藏
页码:21002 / 21024
页数:23
相关论文
共 50 条
  • [1] Ptychographic Spectral Phase Retrieval by Deep Learning
    Chao, Wei-Cheng
    Yang, Shang-Da
    2021 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2021,
  • [2] Phase retrieval based on deep learning in grating interferometer
    Oh, Ohsung
    Kim, Youngju
    Kim, Daeseung
    Hussey, Daniel. S.
    Lee, Seung Wook
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [3] Phase retrieval based on deep learning in grating interferometer
    Ohsung Oh
    Youngju Kim
    Daeseung Kim
    Daniel. S. Hussey
    Seung Wook Lee
    Scientific Reports, 12
  • [4] Removing Non-Resonant Background from CARS spectra via Deep Learning
    Valensise, Carlo M.
    Giuseppi, Alessandro
    Vernuccio, Federico
    De la Cadena, Alejandro
    Cerullo, Giulio
    Polli, Dario
    2021 CONFERENCE ON LASERS AND ELECTRO-OPTICS EUROPE & EUROPEAN QUANTUM ELECTRONICS CONFERENCE (CLEO/EUROPE-EQEC), 2021,
  • [5] Removing non-resonant background from CARS spectra via deep learning
    Valensise, C. M.
    Giuseppi, A.
    Vernuccio, F.
    De la Cadena, A.
    Cerullo, G.
    Polli, D.
    APL PHOTONICS, 2020, 5 (06)
  • [6] Error compensation for phase retrieval in deflectometry based on deep learning
    Guan, Jingtian
    Li, Ji
    Yang, Xiao
    Chen, Xiaobo
    Xi, Juntong
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2023, 34 (02)
  • [7] Low Photon Count Phase Retrieval Using Deep Learning
    Goy, Alexandre
    Arthur, Kwabena
    Li, Shuai
    Barbastathis, George
    PHYSICAL REVIEW LETTERS, 2018, 121 (24)
  • [8] Deep Learning-based Single Frame Phase Retrieval
    Guan, Qingze
    Sheng, Zhichao
    Wang, Fanzhou
    Wang, Chenxing
    SEVENTH INTERNATIONAL CONFERENCE ON OPTICAL AND PHOTONIC ENGINEERING (ICOPEN 2019), 2019, 11205
  • [9] Evaluating different deep learning models for efficient extraction of Raman signals from CARS spectra
    Junjuri, Rajendhar
    Saghi, Ali
    Lensu, Lasse
    Vartiainen, Erik M.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2023, 25 (24) : 16340 - 16353
  • [10] Deep learning embedder method and tool for mass spectra similarity search
    Qin, Chunyuan
    Luo, Xiyang
    Deng, Chuan
    Shu, Kunxian
    Zhu, Weimin
    Griss, Johannes
    Hermjakob, Henning
    Bai, Mingze
    Perez-Riverol, Yasset
    JOURNAL OF PROTEOMICS, 2021, 232