Machine learning of two-dimensional spectroscopic data

被引:20
|
作者
Rodriguez, Mirta [1 ]
Kramer, Tobias [1 ,2 ]
机构
[1] Zuse Inst Berlin, Takustr 7, D-14195 Berlin, Germany
[2] Harvard Univ, Dept Phys, 17 Oxford St, Cambridge, MA 02138 USA
基金
欧盟地平线“2020”;
关键词
Excitonic energy transfer; Light-harvesting complexes; ML numerical methods; Neural networks; EXCITATION-ENERGY TRANSFER; QUANTUM; NETWORKS; PROTEIN;
D O I
10.1016/j.chemphys.2019.01.002
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Two-dimensional electronic spectroscopy has become one of the main experimental tools for analyzing the dynamics of excitonic energy transfer in large molecular complexes. Simplified theoretical models are usually employed to extract model parameters from the experimental spectral data. Here we show that computationally expensive but exact theoretical methods encoded into a neural network can be used to extract model parameters and infer structural information such as dipole orientation from two dimensional electronic spectra (2DES) or reversely, to produce 2DES from model parameters. We propose to use machine learning as a tool to predict unknown parameters in the models underlying recorded spectra and as a way to encode computationally expensive numerical methods into efficient prediction tools. We showcase the use of a trained neural network to efficiently compute disordered averaged spectra and demonstrate that disorder averaging has non-trivial effects for polarization controlled 2DES.
引用
下载
收藏
页码:52 / 60
页数:9
相关论文
共 50 条
  • [21] Electric Machine Two-dimensional Flux Map Prediction with Ensemble Learning
    Talukder, A. K. M. Khaled Ahsan
    Wang, Bingnan
    Sakamoto, Yusuke
    2022 25TH INTERNATIONAL CONFERENCE ON ELECTRICAL MACHINES AND SYSTEMS (ICEMS 2022), 2022,
  • [22] Quantum Machine-Learning for Eigenstate Filtration in Two-Dimensional Materials
    Sajjan, Manas
    Sureshbabu, Shree Han
    Kais, Sabre
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2021, 143 (44) : 18426 - 18445
  • [23] Exploring Two-Dimensional Materials Thermodynamic Stability via Machine Learning
    Schleder, Gabriel R.
    Acosta, Carlos Mera
    Fazzio, Adalberto
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (18) : 20149 - 20157
  • [24] Transition of electrochemical measurement to machine learning in the perspective of two-dimensional materials
    Jitapunkul, Kulpavee
    Chenwittayakhachon, Apiphu
    Iamprasertkun, Pawin
    FRONTIERS IN MATERIALS, 2022, 9
  • [25] Discovery of Two-Dimensional Multinary Component Photocatalysts Accelerated by Machine Learning
    Jin, Hao
    Tan, Xiaoxing
    Wang, Tao
    Yu, Yunjin
    Wei, Yadong
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2022, 13 (31): : 7228 - 7235
  • [26] Applying machine learning methods for the analysis of two-dimensional mass spectra
    Gao, Z.
    Solders, A.
    Al-Adili, A.
    Beliuskina, O.
    Eronen, T.
    Kankainen, A.
    Lantz, M.
    Moore, I. D.
    Nesterenko, D. A.
    Penttila, H.
    Pomp, S.
    Sjostrand, H.
    EUROPEAN PHYSICAL JOURNAL A, 2023, 59 (07):
  • [27] Machine learning in the study of phase transition of two-dimensional complex plasmas
    Huang, He
    Nosenko, Vladimir
    Huang-Fu, Han-Xiao
    Thomas, Hubertus M.
    Du, Cheng-Ran
    PHYSICS OF PLASMAS, 2022, 29 (07)
  • [28] Applying machine learning methods for the analysis of two-dimensional mass spectra
    Z. Gao
    A. Solders
    A. Al-Adili
    O. Beliuskina
    T. Eronen
    A. Kankainen
    M. Lantz
    I. D. Moore
    D. A. Nesterenko
    H. Penttilä
    S. Pomp
    H. Sjöstrand
    The European Physical Journal A, 59
  • [29] Two-dimensional deep learning inversion of magnetotelluric sounding data
    Liu, Wei
    Xi, Zhenzhu
    Wang, He
    Zhang, Rongqing
    JOURNAL OF GEOPHYSICS AND ENGINEERING, 2021, 18 (05) : 627 - 641
  • [30] TREATMENT OF TWO-DIMENSIONAL DISTRIBUTIONS OF EXPERIMENTAL SPECTROSCOPIC DATA BY THE METHOD OF STATISTICAL REGULARIZATION
    GRACHEV, ID
    SALAKHOV, MK
    FISHMAN, IS
    OPTIKA I SPEKTROSKOPIYA, 1983, 54 (05): : 923 - 925