Kinetic modeling of the Fischer-Tropsch synthesis in a slurry phase bubble column reactor using Langmuir-Freundlich isotherm

被引:36
|
作者
Haghtalab, A. [1 ]
Nabipoor, M. [1 ]
Farzad, S. [1 ]
机构
[1] Tarbiat Modares Univ, Dept Chem Engn, Tehran, Iran
基金
美国国家科学基金会;
关键词
Fischer Tropsch Synthesis; Slurry phase bubble column reactor; Kinetic model; Langmuir-Freundlich isotherm; Thermodynamic modeling; CATALYST; OPTIMIZATION; STATE;
D O I
10.1016/j.fuproc.2011.07.005
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
We employed the Langmuir-Freundlich isotherm for Fischer-Tropsch synthesis as a modification of the commonly used Langmuir isotherm, because the Langmuir-Freundlich isotherm can predict the adsorption of gases at solid absorbent more accurately than Langmuir isotherm. Several mechanisms for kinetic modeling of the Fischer-Tropsch synthesis have been developed in which the Langmuir isotherm is the basis of kinetic modeling of the catalytic reactions. Using Langmuir-Freundlich-Hinshelwood (LFH) model, the results of CO conversion in a slurry bubble column reactor show a very good agreement with the experiment. Moreover, we used fugacity instead of the pressure that leads to improve the accuracy of the new kinetic model. The fugacity term has been considered here by using Peng-Robinson Equation of State, modified by Gasem et al. The new kinetic model with fugacity is applied for modeling of a slurry bubble column reactor over the wide range of the reactor conditions of 523-563 K, 0.95-2.55 MPa and H-2/CO ratio: 0.65-1.51. The results of the new kinetic LFH-fugacity model shows the Average Absolute Deviation percentage (AAD%) of 4.25% for the CO conversion while this value is about 10.89% using the original equation based on langmuir isotherm. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:73 / 79
页数:7
相关论文
共 50 条
  • [11] STUDIES AND MODELING OF FISCHER-TROPSCH SYNTHESIS IN BUBBLE COLUMN SLURRY REACTORS
    SANDERS, E
    DECKWER, WD
    CHEMIE INGENIEUR TECHNIK, 1987, 59 (07) : 608 - 608
  • [12] Mathematical modeling of fischer-tropsch synthesis in an industrial slurry bubble column
    Hooshyar, Nasim
    Fatemi, Shohreh
    Rahmani, Mohammad
    International Journal of Chemical Reactor Engineering, 2009, 7
  • [13] Mathematical Modeling of Fischer-Tropsch Synthesis in an Industrial Slurry Bubble Column
    Hooshyar, Nasim
    Fatemi, Shohreh
    Rahmani, Mohammad
    INTERNATIONAL JOURNAL OF CHEMICAL REACTOR ENGINEERING, 2009, 7
  • [14] Design and scale up of a bubble column slurry reactor for Fischer-Tropsch synthesis
    Krishna, R
    van Baten, JM
    Urseanu, MI
    Ellenberger, J
    CHEMICAL ENGINEERING SCIENCE, 2001, 56 (02) : 537 - 545
  • [15] Effects of mass transfer on Fischer-Tropsch synthesis in a slurry bubble column reactor
    Wang, Yu
    Liu, Ying
    Xu, Yuanyuan
    Xiang, Hongwei
    Li, Yongwang
    Huaxue Fanying Gongcheng Yu Gongyi/Chemical Reaction Engineering and Technology, 2007, 23 (06): : 499 - 504
  • [16] A comparison of Fischer-Tropsch synthesis in a slurry bubble column reactor and a continuous stirred tank reactor
    Neathery, JK
    Spicer, RL
    Sparks, DE
    Davis, BH
    CATALYST DEACTIVATION 2001, PROCEEDINGS, 2001, 139 : 407 - 414
  • [17] A strategy for scaling up the Fischer-Tropsch bubble column slurry reactor
    Krishna, R
    van Baten, JM
    TOPICS IN CATALYSIS, 2003, 26 (1-4) : 21 - 28
  • [18] Engineering scale-up of the bubble column slurry reactor for Fischer-Tropsch synthesis
    Zhao, Yulong
    Huaxue Fanying Gongcheng Yu Gongyi/Chemical Reaction Engineering and Technology, 2008, 24 (05): : 461 - 467
  • [19] Performance of a slurry bubble column reactor for Fischer-Tropsch synthesis: Determination of optimum condition
    Woo, Kwang-Jae
    Kang, Suk-Hwan
    Kim, Seung-Moon
    Bae, Jong-Wook
    Jun, Ki-Won
    FUEL PROCESSING TECHNOLOGY, 2010, 91 (04) : 434 - 439
  • [20] Modeling and Simulation of a Fischer-Tropsch Slurry Bubble Column Reactor Using Different Kinetic Rate Expressions for Iron and Cobalt Catalysts
    Sehabiague, Laurent
    Morsi, Badie I.
    INTERNATIONAL JOURNAL OF CHEMICAL REACTOR ENGINEERING, 2013, 11 : 309 - 330