On the classification of quasitoric manifolds over dual cyclic polytopes

被引:5
|
作者
Hasui, Sho [1 ]
机构
[1] Kyoto Univ, Fac Sci, Dept Math, Sakyo Ku, Kyoto 6068502, Japan
来源
ALGEBRAIC AND GEOMETRIC TOPOLOGY | 2015年 / 15卷 / 03期
关键词
TORUS;
D O I
10.2140/agt.2015.15.1387
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a simple n-polytope P, a quasitoric manifold over P is a 2n-dimensional smooth manifold with a locally standard action of an n-dimensional torus for which the orbit space is identified with P. This paper acheives the topological classification of quasitoric manifolds over the dual cyclic polytope C-n(m)* when n > 3 or m-n = 3. Additionally, we classify small covers, the "real version" of quasitoric manifolds, over all dual cyclic polytopes.
引用
收藏
页码:1387 / 1437
页数:51
相关论文
共 50 条