On the classification of quasitoric manifolds over dual cyclic polytopes

被引:5
|
作者
Hasui, Sho [1 ]
机构
[1] Kyoto Univ, Fac Sci, Dept Math, Sakyo Ku, Kyoto 6068502, Japan
来源
ALGEBRAIC AND GEOMETRIC TOPOLOGY | 2015年 / 15卷 / 03期
关键词
TORUS;
D O I
10.2140/agt.2015.15.1387
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a simple n-polytope P, a quasitoric manifold over P is a 2n-dimensional smooth manifold with a locally standard action of an n-dimensional torus for which the orbit space is identified with P. This paper acheives the topological classification of quasitoric manifolds over the dual cyclic polytope C-n(m)* when n > 3 or m-n = 3. Additionally, we classify small covers, the "real version" of quasitoric manifolds, over all dual cyclic polytopes.
引用
收藏
页码:1387 / 1437
页数:51
相关论文
共 50 条
  • [1] Small Covers and Quasitoric Manifolds over Neighborly Polytopes
    Djordje Baralić
    Lazar Milenković
    Mediterranean Journal of Mathematics, 2022, 19
  • [2] Small Covers and Quasitoric Manifolds over Neighborly Polytopes
    Baralic, Djordje
    Milenkovic, Lazar
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2022, 19 (02)
  • [3] Generalized Virtual Polytopes and Quasitoric Manifolds
    Ivan Yu. Limonchenko
    Leonid V. Monin
    Askold G. Khovanskii
    Proceedings of the Steklov Institute of Mathematics, 2022, 318 : 126 - 149
  • [4] SPACES OF POLYTOPES AND COBORDISM OF QUASITORIC MANIFOLDS
    Buchstaber, Victor M.
    Panov, Taras E.
    Ray, Nigel
    MOSCOW MATHEMATICAL JOURNAL, 2007, 7 (02) : 219 - 242
  • [5] Generalized Virtual Polytopes and Quasitoric Manifolds
    Limonchenko, Ivan Yu
    Monin, Leonid, V
    Khovanskii, Askold G.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2022, 318 (01) : 126 - 149
  • [6] Quasitoric manifolds and small covers over properly coloured polytopes: immersions and embeddings
    Baralic, D. B.
    Grujic, V. N.
    SBORNIK MATHEMATICS, 2016, 207 (04) : 479 - 489
  • [7] Classification problem for quasitoric manifolds over a given simple polytope
    Dobrinskaya, NE
    FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 2001, 35 (02) : 83 - 89
  • [8] Classification Problem for Quasitoric Manifolds over a Given Simple Polytope
    N. E. Dobrinskaya
    Functional Analysis and Its Applications, 2001, 35 : 83 - 89
  • [9] QUASITORIC MANIFOLDS OVER A PRODUCT OF SIMPLICES
    Choi, Suyoung
    Masuda, Mikiya
    Suh, Dong Youp
    OSAKA JOURNAL OF MATHEMATICS, 2010, 47 (01) : 109 - 129
  • [10] IMMERSIONS AND EMBEDDINGS OF QUASITORIC MANIFOLDS OVER THE CUBE
    Baralic, Dorde
    PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD, 2014, 95 (109): : 63 - 71