Identification of vegetation responses to soil moisture, rainfall, and LULC over different meteorological subdivisions in India using remote sensing data

被引:11
|
作者
Bhimala, Kantha Rao [1 ,2 ]
Rakesh, V [1 ,2 ]
Prasad, K. Raghavendra [1 ,2 ]
Mohapatra, G. N. [1 ,2 ]
机构
[1] CSIR Fourth Paradigm Inst CSIR 4PI, Wind Tunnel Rd, Bangalore 560037, Karnataka, India
[2] Acad Sci & Innovat Res AcSIR, Ghaziabad, India
基金
美国国家航空航天局;
关键词
PRINCIPAL COMPONENT ANALYSIS; KENDALL TREND TEST; SURFACE-TEMPERATURE; AIR-TEMPERATURE; CLIMATE-CHANGE; WESTERN-GHATS; GREAT-PLAINS; MODIS; NDVI; PRECIPITATION;
D O I
10.1007/s00704-020-03360-8
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Moderate Resolution Imaging Spectroradiometer (MODIS) normalized difference vegetation index (NDVI) data were analyzed to study the vegetation dynamics over different meteorological subdivisions in India for the period 2000-2016. Soil moisture (SM), rainfall (RF), and land use land cover (LULC) data were analyzed to identify the climatic and anthropogenic drivers that cause vegetation changes at the subdivision scale. Principal component analysis and MK (Mann-Kendall) test showed significant greening trend over semi-arid regions of Northwest India (NWI) and South India (SI) while slight browning trend seen over some of the subdivisions in Indo-Gangetic (IG) plains and Western Ghats (WG). It is found that the NDVI has superior correlation with soil moisture compared with rainfall and the croplands (CL) found to have significant increasing trend over the NWI and SI. Increasing trend in soil moisture over the NWI and SI may have contributed to increase in CL area and the greening trend. Over IG plains, the NDVI showed moderate correlation with SM and RF, and the greening trend (browning trend) in some regions can be attributed to increase in natural vegetation mosaic (decrease of CL). The NDVI has shown browning trend over the core monsoon regions of Madhya Pradesh (an increase of barren lands over west MP and decrease of CL over east MP) and Western Ghats (significant decrease of CL over Konkan and Goa). This study revealed that the soil moisture and LULC changes are the major driving factors for the vegetation changes over majority of the subdivisions in India.
引用
收藏
页码:987 / 1001
页数:15
相关论文
共 50 条
  • [21] Estimating soil salinity with different fractional vegetation cover using remote sensing
    Zhang, Junrui
    Zhang, Zhitao
    Chen, Junying
    Chen, Haiying
    Jin, Jiming
    Han, Jia
    Wang, Xintao
    Song, Zhishuang
    Wei, Guangfei
    [J]. LAND DEGRADATION & DEVELOPMENT, 2021, 32 (02) : 597 - 612
  • [22] Monitoring the Ecological Drought Condition of Vegetation during Meteorological Drought Using Remote Sensing Data
    Won, Jeongeun
    Jung, Haeun
    Kang, Shinuk
    Kim, Sangdan
    [J]. KOREAN JOURNAL OF REMOTE SENSING, 2022, -38 (05) : 887 - 899
  • [23] Remote sensing of bare surface soil moisture using EMAC/ESAR data
    Su, Z
    Troch, PA
    DeTroch, FP
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 1997, 18 (10) : 2105 - 2124
  • [24] ESTIMATING SOIL MOISTURE USING OPTICAL AND RADAR SATELLITE REMOTE SENSING DATA
    Natali, Stefano
    Pellegrini, Loreto
    Rossi, Gianluigi
    Giordano, Ludovica
    Iannetta, Massimo
    Schino, Gabriele
    Marini, Alberto
    Nabil, Gasmi
    [J]. DESERTIFICATION AND RISK ANALYSIS USING HIGH AND MEDIUM RESOLUTION SATELLITE DATA, 2009, : 105 - +
  • [25] Estimating soil moisture using remote sensing data: A machine learning approach
    Ahmad, Sajjad
    Kalra, Ajay
    Stephen, Haroon
    [J]. ADVANCES IN WATER RESOURCES, 2010, 33 (01) : 69 - 80
  • [26] Remote sensing of bare surface soil moisture using EMAC/ESAR data
    Su, Z
    Troch, PA
    De Troch, FP
    [J]. EMAC 94/95 FINAL RESULTS - WORKSHOP PROCEEDINGS, 1997, (136): : 53 - 70
  • [27] Integration of soil moisture remote sensing and hydrologic modeling using data assimilation
    Houser, PR
    Shuttleworth, WJ
    Famiglietti, JS
    Gupta, HV
    Syed, KH
    Goodrich, DC
    [J]. WATER RESOURCES RESEARCH, 1998, 34 (12) : 3405 - 3420
  • [28] Relationship between Vegetation and Soil Moisture Anomalies Based on Remote Sensing Data: A Semiarid Rangeland Case
    Martín-Sotoca, Juan José
    Sanz, Ernesto
    Saa-Requejo, Antonio
    Moratiel, Rubén
    Almeida-Ñauñay, Andrés F.
    Tarquis, Ana M.
    [J]. Remote Sensing, 2024, 16 (18)
  • [29] Analysis of Spectral Vegetation Signal Characteristics as a Function of Soil Moisture Conditions Using Hyperspectral Remote Sensing
    A. Brosinsky
    A. Lausch
    D. Doktor
    C. Salbach
    I. Merbach
    S. Gwillym-Margianto
    M. Pause
    [J]. Journal of the Indian Society of Remote Sensing, 2014, 42 : 311 - 324
  • [30] Assessing impact of industrialization in terms of LULC in a dry tropical region (Chhattisgarh), India using remote sensing data and GIS over a period of 30 years
    P. K. Joshi
    M. Kumar
    Ambica Paliwal
    Neha Midha
    P. P. Dash
    [J]. Environmental Monitoring and Assessment, 2009, 149 : 371 - 376