Seawater-pH measurements for ocean-acidification observations

被引:65
|
作者
Rerolle, Victoire M. C. [1 ]
Floquet, Cedric F. A. [1 ]
Mowlem, Matt C. [1 ]
Bellerby, Richard R. G. J. [2 ]
Connelly, Douglas P. [1 ]
Achterberg, Eric P. [1 ]
机构
[1] Univ Southampton, Natl Oceanog Ctr, Southampton SO14 3ZH, Hants, England
[2] Norwegian Inst Water Res, N-5006 Bergen, Norway
基金
英国自然环境研究理事会;
关键词
Carbonate system; Colorimetry; Microfluidic pH sensor; Ocean acidification; Oceanic pH; pH microsensor system; Seawater; Sensor; Spectrophotometric pH; Spectrophotometry; M-CRESOL PURPLE; SPECTROPHOTOMETRIC DETERMINATION; CARBON-DIOXIDE; THYMOL BLUE; SEA-WATER; DISSOCIATION-CONSTANTS; INORGANIC CARBON; OPTICAL SENSORS; TEMPERATURE; ABSORBENCY;
D O I
10.1016/j.trac.2012.07.016
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
The uptake of anthropogenic CO2 by the oceans since the onset of the industrial revolution is considered a serious challenge to marine ecosystems due to ensuing carbonate-chemistry changes (ocean acidification). Furthermore, the CO2 uptake is reducing the ocean's capacity to absorb future CO2 emissions. In order to follow the changes in the ocean's carbonate system, high-quality analytical measurements with good spatial and temporal resolution are necessary. High-precision and accurate pH measurements are now possible, and allow us to determine the progression of ocean acidification. The spectrophotometric pH technique is now widely used and capable of the required high-quality measurements. Spectrophotometric pH systems are deployed on ships and in situ on remote platforms. Smaller and more rugged instruments are nevertheless required for more widespread in situ application to allow routine high-resolution measurements, even in the most remote regions. We critically review oceanic pH measurements, and focus on state-of-the-art spectrophotometric pH measurement techniques and instrumentation. We present a simple microfluidic design integrated in a shipboard instrument featuring high accuracy and precision as a key step towards a targeted pH microsensor system. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:146 / 157
页数:12
相关论文
共 50 条
  • [21] POTENTIAL INTERACTIONS AMONG OCEAN ACIDIFICATION, COCCOLITHOPHORES, AND THE OPTICAL PROPERTIES OF SEAWATER
    Balch, William M.
    Utgoff, Paul E.
    OCEANOGRAPHY, 2009, 22 (04) : 146 - 159
  • [22] Effects of ocean warming with stable and fluctuating ocean acidification on seawater transition in Chinook salmon smolts
    Frommel, Andrea Y.
    Ghanizadeh-Kazerouni, Ensiyeh
    Dichiera, Angelina
    Hunt, Brian P.V.
    Brauner, Colin J.
    Science of the Total Environment, 2024, 955
  • [23] The increasing importance of satellite observations to assess the ocean carbon sink and ocean acidification
    Shutler, Jamie D.
    Gruber, Nicolas
    Findlay, Helen S.
    Land, Peter E.
    Gregor, Luke
    Holding, Thomas
    Sims, Richard P.
    Green, Hannah
    Piolle, Jean-Francois
    Chapron, Bertrand
    Sathyendranath, Shubha
    Rousseaux, Cecile S.
    Donlon, Craig J.
    Cooley, Sarah
    Turner, Jessie
    Valauri-Orton, Alexis
    Lowder, Kaitlyn
    Widdicombe, Steve
    Newton, Jan
    Sabia, Roberto
    Rio, Marie-Helene
    Gaultier, Lucile
    EARTH-SCIENCE REVIEWS, 2024, 250
  • [24] Ocean acidification reverses the positive effects of seawater pH fluctuations on growth and photosynthesis of the habitat-forming kelp, Ecklonia radiata
    Britton, Damon
    Cornwall, Christopher E.
    Revill, Andrew T.
    Hurd, Catriona L.
    Johnson, Craig R.
    SCIENTIFIC REPORTS, 2016, 6
  • [25] Ocean acidification reverses the positive effects of seawater pH fluctuations on growth and photosynthesis of the habitat-forming kelp, Ecklonia radiata
    Damon Britton
    Christopher E. Cornwall
    Andrew T. Revill
    Catriona L. Hurd
    Craig R. Johnson
    Scientific Reports, 6
  • [26] Assessment of pH dependent errors in spectrophotometric pH measurements of seawater
    Takeshita, Yuichiro
    Johnson, Kenneth S.
    Coletti, Luke J.
    Jannasch, Hans W.
    Walz, Peter M.
    Warren, Joseph K.
    MARINE CHEMISTRY, 2020, 223 (223)
  • [27] Coral calcifying fluid pH dictates response to ocean acidification
    Holcomb, M.
    Venn, A. A.
    Tambutte, E.
    Tambutte, S.
    Allemand, D.
    Trotter, J.
    McCulloch, M.
    SCIENTIFIC REPORTS, 2014, 4
  • [28] Advancing Ocean Acidification Biology Using Durafet® pH Electrodes
    Kapsenberg, Lydia
    Bockmon, Emily E.
    Bresnahan, Philip J.
    Kroeker, Kristy J.
    Gattuso, Jean-Pierre
    Martz, Todd R.
    FRONTIERS IN MARINE SCIENCE, 2017, 4
  • [29] Considerations for the measurement of spectrophotometric pH for ocean acidification and other studies
    DeGrandpre, Mike D.
    Spaulding, Reggie S.
    Newton, Jenny O.
    Jaqueth, Emma J.
    Hamblock, Sarah E.
    Umansky, Andre A.
    Harris, Katherine E.
    LIMNOLOGY AND OCEANOGRAPHY-METHODS, 2014, 12 : 830 - 839
  • [30] Erratum: Changes in pH at the exterior surface of plankton with ocean acidification
    Kevin J. Flynn
    Jerry C. Blackford
    Mark E. Baird
    John A. Raven
    Darren R. Clark
    John Beardall
    Colin Brownlee
    Heiner Fabian
    Glen L. Wheeler
    Nature Climate Change, 2012, 2 : 760 - 760