An ESPRIT-SAA-Based Detection Method for Broken Rotor Bar Fault in Induction Motors

被引:37
|
作者
Xu, Boqiang [1 ]
Sun, Liling [1 ]
Xu, Lie [2 ]
Xu, Guoyi [3 ]
机构
[1] N China Elect Power Univ, Sch Elect Engn, Baoding 071003, Peoples R China
[2] Queens Univ Belfast, Sch Elect Elect Engn & Comp Sci, Belfast BT9 5AH, Antrim, North Ireland
[3] N China Elect Power Univ, Key Lab Power Syst Protect & Dynam Secur Monitori, Beijing 102206, Peoples R China
基金
中国国家自然科学基金;
关键词
Broken rotor bar; detection; estimation of signal parameters via rotational invariance technique (ESPRIT); induction motor; simulated annealing algorithm (SAA); PARAMETERS; STATOR;
D O I
10.1109/TEC.2012.2194148
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This paper presents a novel detection method for broken rotor bar fault (BRB) in induction motors based on the estimation of signal parameters via rotational invariance technique (ESPRIT) and simulated annealing algorithm (SAA). The performance of ESPRIT is tested with the simulated stator current signal of an induction motor with BRB. It shows that even with short-time measurement data, the technique is capable of correctly identifying the frequencies of the BRB characteristic components but with a low accuracy on the amplitudes and initial phases of those components. The SAA is then used to determine their amplitudes and initial phases and shows satisfactory results. Finally, experiments on a 3-kW, 380-V, 50-Hz induction motor are conducted to demonstrate the effectiveness of the ESPRIT-SAA-based method in detecting BRB with short-time measurement data. It proves that the proposed method is a promising choice for BRB detection in induction motors operating with small slip and fluctuant load.
引用
下载
收藏
页码:654 / 660
页数:7
相关论文
共 50 条
  • [21] Broken Rotor Bar Detection in Induction Motors through Contrast Estimation
    Rocio Ferrucho-Alvarez, Edna
    Laura Martinez-Herrera, Ana
    Cabal-Yepez, Eduardo
    Rodriguez-Donate, Carlos
    Lopez-Ramirez, Misael
    Ivonne Mata-Chavez, Ruth
    SENSORS, 2021, 21 (22)
  • [22] Multiple signal classification based on automatic order selection method for broken rotor bar detection in induction motors
    Trejo-Caballero, Gerardo
    Rostro-Gonzalez, Horacio
    de Jesus Romero-Troncoso, Rene
    Hugo Garcia-Capulin, Carlos
    Gerardo Ibarra-Manzano, Oscar
    Gabriel Avina-Cervantes, Juan
    Garcia-Perez, Arturo
    ELECTRICAL ENGINEERING, 2017, 99 (03) : 987 - 996
  • [23] Multiple signal classification based on automatic order selection method for broken rotor bar detection in induction motors
    Gerardo Trejo-Caballero
    Horacio Rostro-Gonzalez
    Rene de Jesus Romero-Troncoso
    Carlos Hugo Garcia-Capulin
    Oscar Gerardo Ibarra-Manzano
    Juan Gabriel Avina-Cervantes
    Arturo Garcia-Perez
    Electrical Engineering, 2017, 99 : 987 - 996
  • [24] Broken-Rotor-Bar Diagnosis for Induction Motors
    Wang, Jinjiang
    Gao, Robert X.
    Yan, Ruqiang
    9TH INTERNATIONAL CONFERENCE ON DAMAGE ASSESSMENT OF STRUCTURES (DAMAS 2011), 2011, 305
  • [25] Study on rotor broken-bar fault in induction motors based on spectrum analysis of Hilbert modulus
    Ma, Hong-Zhong
    Yao, Hua-Yang
    Li, Hua-Min
    Dianji yu Kongzhi Xuebao/Electric Machines and Control, 2009, 13 (03): : 371 - 376
  • [26] EMBD-based methodology for broken rotor bar detection in VSD fed induction motors
    Ojeda-Aguirre, Noe A.
    Camarena-Martinez, David
    Garcia-Perez, Arturo
    Valtierra-Rodriguez, Martin
    Amezquita-Sanchez, Juan P.
    2018 IEEE INTERNATIONAL AUTUMN MEETING ON POWER, ELECTRONICS AND COMPUTING (ROPEC), 2018,
  • [27] A novel approach for broken-rotor-bar detection in cage induction motors
    Milimonfared, J
    Kelk, HM
    Nandi, S
    Der Minassians, A
    Toliyat, HA
    IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 1999, 35 (05) : 1000 - 1006
  • [28] Induction motor broken rotor bar fault detection techniques based on fault signature analysis - a review
    Hassan, Ola E.
    Amer, Motaz
    Abdelsalam, Ahmed K.
    Williams, Barry W.
    IET ELECTRIC POWER APPLICATIONS, 2018, 12 (07) : 895 - 907
  • [29] Enhanced FFT-based method for incipient broken rotor bar detection in induction motors during the startup transient
    Rivera-Guillen, Jesus R.
    De Santiago-Perez, J. J.
    Amezquita-Sanchez, Juan P.
    Valtierra-Rodriguez, Martin
    Romero-Troncoso, Rene J.
    MEASUREMENT, 2018, 124 : 277 - 285
  • [30] Pattern recognition - A technique for induction machines rotor fault detection "broken bar fault"
    Haji, M
    Toliyat, HA
    IEMDC 2001: IEEE INTERNATIONAL ELECTRIC MACHINES AND DRIVES CONFERENCE, 2001, : 899 - 904