Convective cell identification using multi-source data

被引:0
|
作者
Jurczyk, Anna [1 ]
Szturc, Jan [1 ]
Osrodka, Katarzyna [1 ]
机构
[1] Inst Meteorol & Water Management, PL-40065 Katowice, Poland
来源
WEATHER RADAR AND HYDROLOGY | 2012年 / 351卷
关键词
precipitation; convection; CLASSIFICATION; RADAR; PRECIPITATION; REFLECTIVITY;
D O I
暂无
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Identification of convective cells is an important issue for detecting severe meteorological phenomena and precipitation nowcasting. The proposed model that classifies each individual radar pixel as convective or stratiform was developed based on multi-source data and applying a fuzzy logic approach. For both classes (stratiform or convective), membership functions for all investigated parameters were defined and aggregated as weighted sums. Comparison of the weighted sums decides which category a considered radar pixel belongs to. Each membership function was determined for selected parameters from: weather radar network, satellite Meteosat 8, lightning detection system, and numerical weather prediction (NWP) model. Then convective pixels were clustered to obtain individual cells, assuming that cells with a small distance between their maxima are joined.
引用
收藏
页码:360 / 365
页数:6
相关论文
共 50 条
  • [21] Downscaling soil moisture using multi-source data in China
    An, Ru
    Wang, Hui-Lin
    You, Jia-jun
    Wang, Ying
    Shen, Xiao-ji
    Gao, Wei
    Wang, Yi-nan
    Zhang, Yu
    Wang, Zhe
    Quaye-Ballardd, Jonathan Arthur
    Chen, Yuehong
    IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING XXII, 2016, 10004
  • [22] Multi-Source Domain Adaptation Using Ambient Sensor Data
    Dridi, Jawher
    Amayri, Manar
    Bouguila, Nizar
    APPLIED ARTIFICIAL INTELLIGENCE, 2024, 38 (01)
  • [23] Predicting Global Seafloor Topography Using Multi-Source Data
    Hu, Min Zhang
    Li, Jian Cheng
    Li, Hui
    Shen, Chong Yang
    Jin, Tao Yong
    Xing, Le Lin
    MARINE GEODESY, 2015, 38 (02) : 176 - 189
  • [24] Inferring region significance by using multi-source spatial data
    Shunzhi Zhu
    Dahan Wang
    Lijuan Liu
    Yan Wang
    Danhuai Guo
    Neural Computing and Applications, 2020, 32 : 6523 - 6531
  • [25] Research on the Management of Multi-source Data
    Liu, Wen Jing
    Zhao, Man
    Guo, Fei
    Sun, Xiao Rui
    Chen, Yu
    FRONTIERS OF MANUFACTURING SCIENCE AND MEASURING TECHNOLOGY V, 2015, : 405 - 408
  • [26] Bayesian analysis of multi-source data
    Bhat, P. C.
    Prosper, H. B.
    Snyder, S. S.
    Physics Letters. Section B: Nuclear, Elementary Particle and High-Energy Physics, 407 (01):
  • [27] Multi-source data analysis challenges
    Uselton, S
    Ahrens, J
    Bethel, W
    Treinish, L
    State, A
    VISUALIZATION '98, PROCEEDINGS, 1998, : 501 - 504
  • [28] Multi-source Heterogeneous Data Fusion
    Zhang, Lili
    Xie, Yuxiang
    Luan Xidao
    Zhang, Xin
    2018 INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND BIG DATA (ICAIBD), 2018, : 47 - 51
  • [29] Bayesian analysis of multi-source data
    Bhat, PC
    Prosper, HB
    Snyder, SS
    PHYSICS LETTERS B, 1997, 407 (01) : 73 - 78
  • [30] Learning from multi-source data
    Fromont, E
    Cordier, MO
    Quiniou, R
    KNOWLEDGE DISCOVERY IN DATABASES: PKDD 2004, PROCEEDINGS, 2004, 3202 : 503 - 505