Convective cell identification using multi-source data

被引:0
|
作者
Jurczyk, Anna [1 ]
Szturc, Jan [1 ]
Osrodka, Katarzyna [1 ]
机构
[1] Inst Meteorol & Water Management, PL-40065 Katowice, Poland
来源
关键词
precipitation; convection; CLASSIFICATION; RADAR; PRECIPITATION; REFLECTIVITY;
D O I
暂无
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Identification of convective cells is an important issue for detecting severe meteorological phenomena and precipitation nowcasting. The proposed model that classifies each individual radar pixel as convective or stratiform was developed based on multi-source data and applying a fuzzy logic approach. For both classes (stratiform or convective), membership functions for all investigated parameters were defined and aggregated as weighted sums. Comparison of the weighted sums decides which category a considered radar pixel belongs to. Each membership function was determined for selected parameters from: weather radar network, satellite Meteosat 8, lightning detection system, and numerical weather prediction (NWP) model. Then convective pixels were clustered to obtain individual cells, assuming that cells with a small distance between their maxima are joined.
引用
收藏
页码:360 / 365
页数:6
相关论文
共 50 条
  • [1] A Machine Learning Approach for Convective Initiation Detection Using Multi-source Data
    Liu, Xuan
    Chen, Haonan
    Han, Lei
    Ge, Yurong
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 6518 - 6521
  • [2] Integrated subgroup identification from multi-source data
    Shao, Lihui
    Wu, Jiaqi
    Zhang, Weiping
    Chen, Yu
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2024, 193
  • [3] Integrated subgroup identification from multi-source data
    Shao, Lihui
    Wu, Jiaqi
    Zhang, Weiping
    Chen, Yu
    Computational Statistics and Data Analysis, 2024, 193
  • [4] Key Data Source Identification Method Based on Multi-Source Traffic Data Fusion
    Li, Shuo
    Zhang, Mengmeng
    Chen, Yongheng
    CICTP 2020: TRANSPORTATION EVOLUTION IMPACTING FUTURE MOBILITY, 2020, : 364 - 375
  • [5] Application of the Multi-Source Data Fusion Algorithm in the Hail Identification
    Zhu, Yonghua
    Wang, Yongqing
    Hu, Zhiqun
    Xu, Fansen
    Liu, Renqiang
    ASIA-PACIFIC JOURNAL OF ATMOSPHERIC SCIENCES, 2022, 58 (03) : 435 - 450
  • [6] Application of the Multi-Source Data Fusion Algorithm in the Hail Identification
    Yonghua Zhu
    Yongqing Wang
    Zhiqun Hu
    Fansen Xu
    Renqiang Liu
    Asia-Pacific Journal of Atmospheric Sciences, 2022, 58 : 435 - 450
  • [7] Intelligent identification for subgrade disease based on multi-source data
    Cheng, Zhiheng
    Song, Xiuguang
    Wang, Jianzhu
    Du, Cong
    Wu, Jianqing
    MEASUREMENT, 2025, 251
  • [8] Wind load identification of lattice towers using multi-source heterogeneous monitoring data
    Zhang, Qing
    Fu, Xing
    Lai, Tao
    Ren, Liang
    JOURNAL OF WIND ENGINEERING AND INDUSTRIAL AERODYNAMICS, 2023, 236
  • [9] Tunnel driving risk identification based on multi-source data
    Jin, Sheng
    Jiang, Yang
    Liu, Bokun
    Bai, Congcong
    Zhou, Mengtao
    Dongnan Daxue Xuebao (Ziran Kexue Ban)/Journal of Southeast University (Natural Science Edition), 2024, 54 (06): : 1511 - 1519
  • [10] Using granular objects in multi-source data fusion
    Yager, RR
    ROUGH SETS AND CURRENT TRENDS IN COMPUTING, PROCEEDINGS, 2002, 2475 : 324 - 330