Notes on sum-free and related sets

被引:16
|
作者
Cameron, PJ
Erdos, P
机构
[1] Univ London Queen Mary & Westfield Coll, Sch Math Sci, London E1 4NS, England
[2] Hungarian Acad Sci, Inst Math, H-1364 Budapest, Hungary
来源
COMBINATORICS PROBABILITY & COMPUTING | 1999年 / 8卷 / 1-2期
关键词
D O I
10.1017/S0963548398003435
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Our main topic is the number of subsets of [1,n] which are maximal with respect to some condition such as being sum-free, having no number dividing another, etc. We also investigate some related questions.
引用
收藏
页码:95 / 107
页数:13
相关论文
共 50 条
  • [41] Bounds on the number of maximal sum-free sets
    Wolfovitz, Guy
    EUROPEAN JOURNAL OF COMBINATORICS, 2009, 30 (07) : 1718 - 1723
  • [42] Groups with few maximal sum-free sets
    Liu, Hong
    Sharifzadeh, Maryam
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2021, 177
  • [43] Regular saturated graphs and sum-free sets
    Timmons, Craig
    DISCRETE MATHEMATICS, 2022, 345 (01)
  • [44] Sharp estimates for the number of sum-free sets
    Lev, VF
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2003, 555 : 1 - 25
  • [45] On Maximal Sum-Free Sets in Abelian Groups
    Hassler, Nathanael
    Treglown, Andrew
    ELECTRONIC JOURNAL OF COMBINATORICS, 2022, 29 (02): : 1 - 24
  • [46] Counting sum-free sets in abelian groups
    Alon, Noga
    Balogh, Jozsef
    Morris, Robert
    Samotij, Wojciech
    ISRAEL JOURNAL OF MATHEMATICS, 2014, 199 (01) : 309 - 344
  • [47] A note on the largest sum-free sets of integers
    Jing, Yifan
    Wu, Shukun
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2024, 109 (01):
  • [48] Large sum-free sets in Z/pZ
    Lev, Vsevolod F.
    ISRAEL JOURNAL OF MATHEMATICS, 2006, 154 (1) : 221 - 233
  • [49] On the number of sum-free sets in a segment of positive integers
    Omelyanov, K.G.
    Sapozhenko, A.A.
    Discrete Mathematics and Applications, 2002, 12 (04): : 319 - 323
  • [50] Symmetric complete sum-free sets in cyclic groups
    Haviv, Ishay
    Levy, Dan
    ISRAEL JOURNAL OF MATHEMATICS, 2018, 227 (02) : 931 - 956