A characterization of singular electromagnetic fields by an inductive approach

被引:0
|
作者
Assous, F. [1 ,2 ]
Ciarlet, P., Jr. [3 ]
Garcia, E. [4 ,5 ]
机构
[1] Bar Ilan Univ, IL-52900 Ramat Gan, Israel
[2] Ariel Univ Ctr, IL-40700 Ariel, Israel
[3] Ecole Natl Super Tech Avancees, INRIA, CNRS, Lab POEMS, F-75739 Paris, France
[4] ASTRIUM Space Transportat, Elect Design Off, F-78133 Les Mureaux, France
[5] ASTRIUM Space Transportat, EMC, F-78133 Les Mureaux, France
关键词
Maxwell's equations; singular geometries; polyhedral domains;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we are interested in the mathematical modeling of singular electromagnetic fields, in a non-convex polyhedral domain. We first describe the local trace (i. e. defined on a face) of the normal derivative of an L-2 function, with L-2 Laplacian. Among other things, this allows us to describe dual singularities of the Laplace problem with homogeneous Neumann boundary condition. We then provide generalized integration by parts formulae for the Laplace, divergence and curl operators. With the help of these results, one can split electromagnetic fields into regular and singular parts, which are then characterized. We also study the particular case of divergence-free and curl-free fields, and provide non-orthogonal decompositions that are numerically computable.
引用
收藏
页码:491 / 515
页数:25
相关论文
共 50 条
  • [31] ELECTROMAGNETIC THEORY IN GENERAL RELATIVITY .2. NON-SINGULAR FIELDS
    DEBNEY, GC
    ZUND, JD
    TENSOR, 1972, 25 : 53 - 62
  • [32] Electromagnetic fields between moving mirrors: singular waveforms inside Doppler cavities
    Koutserimpas, Theodoros T.
    Valagiannopoulos, Constantinos
    OPTICS EXPRESS, 2023, 31 (03) : 5087 - 5101
  • [33] SINGULAR PERTURBATION-THEORY AND ITS APPLICATION TO THE COMPUTATION OF ELECTROMAGNETIC-FIELDS
    SCHILDERS, WHA
    POLAK, SJ
    VANWELI, JS
    IEEE TRANSACTIONS ON MAGNETICS, 1985, 21 (06) : 2211 - 2216
  • [34] COMPUTATION OF SINGULAR ELECTROMAGNETIC FIELDS USING A HYBRID DG-FEM METHOD
    Ivanyshyn, Olha
    Gjonaj, Erion
    Weiland, Thomas
    PROCEEDINGS OF 2013 URSI INTERNATIONAL SYMPOSIUM ON ELECTROMAGNETIC THEORY (EMTS), 2013, : 745 - 748
  • [35] Study of Singular Integral Nature in BEM of 3-D Electromagnetic Fields
    Li Yasha
    TECHNOLOGY AND APPLICATION OF ELECTRONIC INFORMATION, 2009, : 224 - 227
  • [36] A Novel Approach for Evaluating Singular Integrals in Electromagnetic Integral Equations
    Sheng, W. T.
    Zhu, Z. Y.
    Tong, M. S.
    2012 IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM (APSURSI), 2012,
  • [37] INDUCTIVE RINGS AND FIELDS
    WANG, SQ
    ANNALS OF PURE AND APPLIED LOGIC, 1989, 44 (1-2) : 133 - 137
  • [38] Step response characterization of nonlinear diffusion of electromagnetic fields
    Mayergoyz, ID
    Serpico, C
    JOURNAL OF APPLIED PHYSICS, 1999, 85 (08) : 4388 - 4390
  • [39] SINGULAR MODULI FOR REAL QUADRATIC FIELDS: A RIGID ANALYTIC APPROACH
    Darmon, Henri
    Vonk, Jan
    DUKE MATHEMATICAL JOURNAL, 2021, 170 (01) : 23 - 93
  • [40] A SINGULAR PERTURBATION APPROACH TO ION AND ELECTRON CONFINEMENT IN TRAPPING FIELDS
    SOBEHART, JB
    FARENGO, R
    PHYSICS OF PLASMAS, 1994, 1 (05) : 1128 - 1136