Clement interpolation and its role in adaptive finite element error control

被引:0
|
作者
Carstensen, Carsten [1 ]
机构
[1] Humboldt Univ, D-10099 Berlin, Germany
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Several approximation operators followed Philippe Clement's seminal paper in 1975 and are hence known as Clement-type interpolation operators, weak-, or quasi-interpolation operators. Those operators map some Sobolev space V subset of W-k,W-p(Omega) onto some finite element space V-h subset of W-k,W-p(Omega) and generalize nodal interpolation operators whenever W-k,W-p(Omega) not subset of C-0((Omega) over bar), i.e., when p <= n/k for a bounded Lipschitz domain Omega subset of R-n. The original motivation was H-2 not subset of C-0(Omega) for higher dimensions n >= 4 and hence nodal interpolation is not well defined. Todays main use of the approximation operators is for a reliability proof in a posteriori error control. The survey reports on the class of Clement type interpolation operators, its use in a posteriori finite element error control and for coarsening in adaptive mesh design.
引用
收藏
页码:27 / 43
页数:17
相关论文
共 50 条
  • [31] A New a Posteriori Error Estimate for Adaptive Finite Element Methods
    Huang, Yunqing
    Wei, Huayi
    Yang, Wei
    Yi, Nianyu
    DOMAIN DECOMPOSITION METHODS IN SCIENCE AND ENGINEERING XIX, 2011, 78 : 63 - 74
  • [32] Error reduction and convergence for an adaptive mixed finite element method
    Carstensen, Carsten
    Hoppe, R. H. W.
    MATHEMATICS OF COMPUTATION, 2006, 75 (255) : 1033 - 1042
  • [33] A Statistical Approach for Error Estimation in Adaptive Finite Element Method
    Moslemi, Hamid
    Tavakkoli, Ali
    INTERNATIONAL JOURNAL FOR COMPUTATIONAL METHODS IN ENGINEERING SCIENCE & MECHANICS, 2018, 19 (06): : 440 - 450
  • [34] On Round-off Error for Adaptive Finite Element Methods
    Alvarez-Aramberri, J.
    Pardo, D.
    Paszynski, Maciej
    Collier, Nathan
    Dalcin, Lisandro
    Calo, Victor M.
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE, ICCS 2012, 2012, 9 : 1474 - 1483
  • [35] Adaptive control for finite element analysis in plasticity
    Lab. de Mecan. et Technologie, E.N.S. Cachan/C.N.R.S./Univ. Paris 6, 61 Avenue de Président Wilson, 94235 Cachan Cedex, France
    Comput Struct, 1-5 (45-60):
  • [36] Adaptive control for finite element analysis in plasticity
    Ladevèze, P
    Moës, N
    COMPUTERS & STRUCTURES, 1999, 73 (1-5) : 45 - 60
  • [37] Interpolation Error Bounds for Curvilinear Finite Elements and Their Implications on Adaptive Mesh Refinement
    Moxey, David
    Sastry, Shankar P.
    Kirby, Robert M.
    JOURNAL OF SCIENTIFIC COMPUTING, 2019, 78 (02) : 1045 - 1062
  • [38] Interpolation Error Bounds for Curvilinear Finite Elements and Their Implications on Adaptive Mesh Refinement
    David Moxey
    Shankar P. Sastry
    Robert M. Kirby
    Journal of Scientific Computing, 2019, 78 : 1045 - 1062
  • [39] Consistent finite element structural analysis and error control
    Morris, AJ
    Vignjevic, R
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1997, 140 (1-2) : 87 - 108
  • [40] A unifying theory of a posteriori finite element error control
    Carstensen, C
    NUMERISCHE MATHEMATIK, 2005, 100 (04) : 617 - 637