Clement interpolation and its role in adaptive finite element error control

被引:0
|
作者
Carstensen, Carsten [1 ]
机构
[1] Humboldt Univ, D-10099 Berlin, Germany
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Several approximation operators followed Philippe Clement's seminal paper in 1975 and are hence known as Clement-type interpolation operators, weak-, or quasi-interpolation operators. Those operators map some Sobolev space V subset of W-k,W-p(Omega) onto some finite element space V-h subset of W-k,W-p(Omega) and generalize nodal interpolation operators whenever W-k,W-p(Omega) not subset of C-0((Omega) over bar), i.e., when p <= n/k for a bounded Lipschitz domain Omega subset of R-n. The original motivation was H-2 not subset of C-0(Omega) for higher dimensions n >= 4 and hence nodal interpolation is not well defined. Todays main use of the approximation operators is for a reliability proof in a posteriori error control. The survey reports on the class of Clement type interpolation operators, its use in a posteriori finite element error control and for coarsening in adaptive mesh design.
引用
收藏
页码:27 / 43
页数:17
相关论文
共 50 条
  • [1] Adaptive error control for multigrid finite element methods
    Heidelberg, RB
    Goteborg, CJ
    Rannacher, R
    COMPUTING, 1995, 55 (04) : 271 - 288
  • [2] Adaptive error control for multigrid finite element methods
    Universitaet Heidelberg, Heidelberg, Germany
    Comput Vienna New York, 4 (271-288):
  • [3] Estimation of interpolation error constants for the triangular finite element
    Kikuchi, Fumio
    Liu, Xuefeng
    3rd International Conference on Computing, Communications and Control Technologies, Vol 1, Proceedings, 2005, : 107 - 112
  • [4] Optimization under adaptive error control for finite element based simulations
    Waanders, Bart G. van Bloemen
    Carnes, Brian R.
    COMPUTATIONAL MECHANICS, 2011, 47 (01) : 49 - 63
  • [5] Optimization under adaptive error control for finite element based simulations
    Bart G. van Bloemen Waanders
    Brian R. Carnes
    Computational Mechanics, 2011, 47 : 49 - 63
  • [6] Interpolation with restrictions in an anisotropic adaptive finite element framework
    Bahbah, C.
    Mesri, Y.
    Hachem, E.
    FINITE ELEMENTS IN ANALYSIS AND DESIGN, 2018, 142 : 30 - 41
  • [7] An adaptive finite element method for the Stokes equations including control of the iteration error
    Becker, R
    ENUMATH 97 - 2ND EUROPEAN CONFERENCE ON NUMERICAL MATHEMATICS AND ADVANCED APPLICATIONS, 1998, : 609 - 620
  • [8] Computational error estimation and adaptive error control for a finite element solution of launch vehicle trajectory problems
    Estep, D
    Hodges, DH
    Warner, M
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2000, 21 (04): : 1609 - 1631
  • [9] Computational error estimation and adaptive error control for a finite element solution of launch vehicle trajectory problems
    School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332, United States
    不详
    Siam J. Sci. Comput., 4 (1609-1631):
  • [10] Adaptive error control for finite element approximations of the lift and drag coefficients in viscous flow
    Giles, Michael
    Larson, Mats G.
    Levenstam, J.Marten
    Suli, Endre
    Doktorsavhandlingar vid Chalmers Tekniska Hogskola, 1996, (1257):