On Limiting Donor Usage for Imputation of Missing Data via Hot Deck Methods

被引:1
|
作者
Bankhofer, Udo [1 ]
Joenssen, Dieter William [1 ]
机构
[1] Ilmenau Univ Technol, Dept Quantitat Methods Business Sci, Helmholtzpl 3, D-98693 Ilmenau, Germany
关键词
NONRESPONSE;
D O I
10.1007/978-3-319-01595-8_1
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Hot deck methods impute missing values within a data matrix by using available values from the same matrix. The object from which these available values are taken for imputation is called the donor. Selection of a suitable donor for the receiving object can be done within imputation classes. The risk inherent to this strategy is that any donor might be selected for multiple value recipients. In extreme cases one donor can be selected for too many or even all values. To mitigate this donor over usage risk, some hot deck procedures limit the amount of times one donor may be selected for value donation. This study answers if limiting donor usage is a superior strategy when considering imputation variance and bias in parameter estimates.
引用
收藏
页码:3 / 11
页数:9
相关论文
共 50 条
  • [21] Improved methods for the imputation of missing data by nearest neighbor methods
    Tutz, Gerhard
    Ramzan, Shahla
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2015, 90 : 84 - 99
  • [22] FINDING A FLEXIBLE HOT-DECK IMPUTATION METHOD FOR MULTINOMIAL DATA
    Andridge, Rebecca
    Bechtel, Laura
    Thompson, Katherine Jenny
    [J]. JOURNAL OF SURVEY STATISTICS AND METHODOLOGY, 2021, 9 (04) : 789 - 809
  • [23] Comparison of missing data imputation methods using weather data
    Nida, Hafiza
    Kashif, Muhammad
    Khan, Muhammad Imran
    Ghamkhar, Madiha
    [J]. PAKISTAN JOURNAL OF AGRICULTURAL SCIENCES, 2023, 60 (02): : 327 - 336
  • [24] A new double hot-deck imputation method for missing values under boundary conditions
    Park, Yousung
    Kwon, Tae Yeon
    [J]. SURVEY METHODOLOGY, 2020, 46 (01) : 121 - 139
  • [25] Ensemble imputation methods for missing software engineering data
    Twala, B
    Cartwright, M
    [J]. 2005 11TH INTERNATIONAL SYMPOSIUM ON SOFTWARE METRICS (METRICS), 2005, : 268 - 277
  • [26] Some imputation methods for missing data in sample surveys
    Singh, G. N.
    Maurya, S.
    Khetan, M.
    Kadilar, Cem
    [J]. Hacettepe Journal of Mathematics and Statistics, 2016, 45 (06): : 1865 - 1880
  • [27] A comparison of imputation methods for the consecutive missing temperature data
    Kim, Hee-Kyung
    Kang, In-Kyeong
    Lee, Jae-Won
    Lee, Yung-Seop
    [J]. KOREAN JOURNAL OF APPLIED STATISTICS, 2016, 29 (03) : 549 - 557
  • [28] Imputation methods for missing data in educational diagnostic evaluation
    Fernandez-Alonso, Ruben
    Suarez-Alvarez, Javier
    Muniz, Jose
    [J]. PSICOTHEMA, 2012, 24 (01) : 167 - 175
  • [29] New imputation methods for missing data using quantiles
    Munoz, J. F.
    Rueda, M.
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 232 (02) : 305 - 317
  • [30] Application and Comparison of Imputation Methods for Missing Degradation Data
    Fan, Ye
    Sun, Fuqiang
    Jiang, Tongmin
    [J]. ENGINEERING ASSET MANAGEMENT - SYSTEMS, PROFESSIONAL PRACTICES AND CERTIFICATION, 2015, : 1607 - 1614