3-piercing of d-dimensional boxes and homothetic triangles

被引:4
|
作者
Assa, E [1 ]
Katz, MJ
机构
[1] Tel Aviv Univ, Sch Math Sci, IL-69978 Tel Aviv, Israel
[2] Ben Gurion Univ Negev, Dept Math & Comp Sci, IL-84105 Beer Sheva, Israel
关键词
geometric optimization; p-center; piercing set;
D O I
10.1142/S0218195999000170
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In the p-piercing problem, a set S of n d-dimensional objects is given, and one has to compute a piercing set for S of size p, if such a set exists. We consider several instances of the 3-piercing problem that admit linear or almost linear solutions: (i) If S consists of axis-parallel boxes in Rd, then a piercing triplet for S can be found (if such a triplet exists) in O(n log n) time, for 3 less than or equal to d less than or equal to 5, and in O(n([d/3]) log n) time, for d greater than or equal to 6. Based on the solutions for 3 less than or equal to d less than or equal to 5, efficient solutions are obtained to the corresponding 3-center problem - Given a set P of n points in Rd, compute the smallest edge length lambda such that P can be covered by the union of three axis-parallel cubes of edge length lambda. (ii) If S consists of homothetic triangles in the plane, or of 4-oriented trapezoids in the plane, then a piercing triplet can be found in O(n log n) time.
引用
收藏
页码:249 / 259
页数:11
相关论文
共 50 条
  • [1] Large triangles in the d-dimensional unit cube
    Lefmann, Hanno
    THEORETICAL COMPUTER SCIENCE, 2006, 363 (01) : 85 - 98
  • [2] Large triangles in the d-dimensional unit-cube
    Lefmann, H
    COMPUTING AND COMBINATORICS, PROCEEDINGS, 2004, 3106 : 43 - 52
  • [3] The complexity of combinatorial optimization problems on d-dimensional boxes
    Chlebik, Miroslav
    Chlebikova, Janka
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2007, 21 (01) : 158 - 169
  • [4] Online packing of d-dimensional boxes into the unit cube
    Janusz Januszewski
    Łukasz Zielonka
    Periodica Mathematica Hungarica, 2020, 81 : 98 - 114
  • [5] Online packing of d-dimensional boxes into the unit cube
    Januszewski, Janusz
    Zielonka, Lukasz
    PERIODICA MATHEMATICA HUNGARICA, 2020, 81 (01) : 98 - 114
  • [6] Approximation Hardness of Optimization Problems in Intersection Graphs of d-dimensional Boxes
    Chlebik, Miroslav
    Chlebikova, Janka
    PROCEEDINGS OF THE SIXTEENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2005, : 267 - 276
  • [7] D-Dimensional Metrics with D−3 Symmetries
    A. Szereszewski
    J. Tafel
    M. Jakimowicz
    International Journal of Theoretical Physics, 2012, 51 : 1360 - 1369
  • [8] D-Dimensional Metrics with D-3 Symmetries
    Szereszewski, A.
    Tafel, J.
    Jakimowicz, M.
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2012, 51 (05) : 1360 - 1369
  • [9] A largest common d-dimensional subsequence of two d-dimensional strings
    Arslan, Abdullah N.
    FUNDAMENTALS OF COMPUTATION THEORY, PROCEEDINGS, 2007, 4639 : 40 - 51
  • [10] D-DIMENSIONAL TURBULENCE
    FOURNIER, JD
    FRISCH, U
    PHYSICAL REVIEW A, 1978, 17 (02) : 747 - 762