Dynamical Mapping of Anopheles darlingi Densities in a Residual Malaria Transmission Area of French Guiana by Using Remote Sensing and Meteorological Data

被引:16
|
作者
Adde, Antoine [1 ]
Roux, Emmanuel [2 ]
Mangeas, Morgan [2 ]
Dessay, Nadine [2 ]
Nacher, Mathieu [3 ]
Dusfour, Isabelle [1 ]
Girod, Romain [1 ]
Briolant, Sebastien [1 ,4 ,5 ,6 ]
机构
[1] Inst Pasteur, Unite Entomol Med, Cayenne, French Guiana
[2] Inst Rech Dev, UMR ESPACE DEV, Montpellier, France
[3] Ctr Hosp Andree Rosemon, Ctr Invest Clin & Epiderniol Clin Antilles Guyane, Cayenne, French Guiana
[4] Direct Interarmees Serv Sante Guyane, Cayenne, French Guiana
[5] Inst Rech Biomed Armees, Unite Parasitol & Entomol Med, Marseille, France
[6] Fac Med La Timone, Unite Rech Malad Infect Trop Emergentes, Marseille, France
来源
PLOS ONE | 2016年 / 11卷 / 10期
关键词
PLASMODIUM-FALCIPARUM; VECTOR CONTROL; CULICIDAE; DIPTERA; RISK; ROOT; MAP; INTERVENTIONS; HETEROGENEITY; PATTERNS;
D O I
10.1371/journal.pone.0164685
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Local variation in the density of Anopheles mosquitoes and the risk of exposure to bites are essential to explain the spatial and temporal heterogeneities in the transmission of malaria. Vector distribution is driven by environmental factors. Based on variables derived from satellite imagery and meteorological observations, this study aimed to dynamically model and map the densities of Anopheles darlingi in the municipality of Saint-Georges de I'Oyapock (French Guiana). Longitudinal sampling sessions of An. darlingi densities were conducted between September 2012 and October 2014. Landscape and meteorological data were collected and processed to extract a panel of variables that were potentially related to An. darlingi ecology. Based on these data, a robust methodology was formed to estimate a statistical predictive model of the spatial-temporal variations in the densities of An. darlingi in Saint-Georges de l'Oyapock. The final cross-validated model integrated two landscape variables dense forest surface and built surface together with four meteorological variables related to rainfall, evapotranspiration, and the minimal and maximal temperatures. Extrapolation of the model allowed the generation of predictive weekly maps of An. darlingi densities at a resolution of 10-m. Our results supported the use of satellite imagery and meteorological data to predict malaria vector densities. Such fine-scale modeling approach might be a useful tool for health authorities to plan control strategies and social communication in a cost-effective, targeted, and timely manner.
引用
收藏
页数:20
相关论文
共 38 条
  • [21] Mapping impervious surface area increase and urban pluvial flooding using Sentinel Application Platform (SNAP) and remote sensing data
    Muhammad Nasar Ahmad
    Zhenfeng Shao
    Akib Javed
    Environmental Science and Pollution Research, 2023, 30 : 125741 - 125758
  • [22] Mapping impervious surface area increase and urban pluvial flooding using Sentinel Application Platform (SNAP) and remote sensing data
    Ahmad, Muhammad Nasar
    Shao, Zhenfeng
    Javed, Akib
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2023, 30 (60) : 125774 - 125789
  • [23] Prospectivity mapping of Pb-Zn SEDEX mineralization using remote-sensing data in the Behabad area, Central Iran
    Molan, Yusuf Eshqi
    Behnia, Pouran
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2013, 34 (04) : 1164 - 1179
  • [24] Spatio-temporal analysis and prediction of malaria cases using remote sensing meteorological data in Diébougou health district, Burkina Faso, 2016–2017
    Cédric S. Bationo
    Jean Gaudart
    Sokhna Dieng
    Mady Cissoko
    Paul Taconet
    Boukary Ouedraogo
    Anthony Somé
    Issaka Zongo
    Dieudonné D. Soma
    Gauthier Tougri
    Roch K. Dabiré
    Alphonsine Koffi
    Cédric Pennetier
    Nicolas Moiroux
    Scientific Reports, 11
  • [25] Spatio-temporal analysis and prediction of malaria cases using remote sensing meteorological data in Diebougou health district, Burkina Faso, 2016-2017
    Bationo, Cedric S.
    Gaudart, Jean
    Dieng, Sokhna
    Cissoko, Mady
    Taconet, Paul
    Ouedraogo, Boukary
    Some, Anthony
    Zongo, Issaka
    Soma, Dieudonne D.
    Tougri, Gauthier
    Dabire, Roch K.
    Koffi, Alphonsine
    Pennetier, Cedric
    Moiroux, Nicolas
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [26] An empirical model to estimate daily forest fire smoke exposure over a large geographic area using air quality, meteorological, and remote sensing data
    Jiayun Yao
    Sarah B Henderson
    Journal of Exposure Science & Environmental Epidemiology, 2014, 24 : 328 - 335
  • [27] An empirical model to estimate daily forest fire smoke exposure over a large geographic area using air quality, meteorological, and remote sensing data
    Yao, Jiayun
    Henderson, Sarah B.
    JOURNAL OF EXPOSURE SCIENCE AND ENVIRONMENTAL EPIDEMIOLOGY, 2014, 24 (03) : 328 - 335
  • [28] Validation of a mapping and prediction model for human fasciolosis transmission in Andean very high altitude endemic areas using remote sensing data
    Fuentes, MV
    Malone, JB
    Mas-Coma, S
    ACTA TROPICA, 2001, 79 (01) : 87 - 95
  • [29] Landslide susceptibility mapping of Al Taif urban area, Saudi Arabia, using remote sensing data and microtremor measurements: integrated approach
    Abdelrahman, Kamal
    Al-Amri, Abdullah M.
    Al-Kahtany, Khaled
    Al-Otaibi, Naif
    FRONTIERS IN EARTH SCIENCE, 2023, 11
  • [30] Recent Incidence of Human Malaria Caused by Plasmodium knowlesi in the Villages in Kudat Peninsula, Sabah, Malaysia: Mapping of The Infection Risk Using Remote Sensing Data
    Sato, Shigeharu
    Tojo, Bumpei
    Hoshi, Tomonori
    Minsong, Lis Izni Fanirah
    Kugan, Omar Kwang
    Giloi, Nelbon
    Ahmed, Kamruddin
    Jeffree, Saffree Mohammad
    Moji, Kazuhiko
    Kita, Kiyoshi
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2019, 16 (16)