Self-Supervised Representation Learning by Rotation Feature Decoupling

被引:125
|
作者
Feng, Zeyu [1 ]
Xu, Chang [1 ]
Tao, Dacheng [1 ]
机构
[1] Univ Sydney, UBTECH Sydney AI Ctr, Sch Comp Sci, FEIT, Darlington, NSW 2008, Australia
基金
澳大利亚研究理事会;
关键词
D O I
10.1109/CVPR.2019.01061
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We introduce a self-supervised learning method that focuses on beneficial properties of representation and their abilities in generalizing to real-world tasks. The method incorporates rotation invariance into the feature learning framework, one of many good and well-studied properties of visual representation, which is rarely appreciated or exploited by previous deep convolutional neural network based self-supervised representation learning methods. Specifically, our model learns a split representation that contains both rotation related and unrelated parts. We train neural networks by jointly predicting image rotations and discriminating individual instances. In particular, our model decouples the rotation discrimination from instance discrimination, which allows us to improve the rotation prediction by mitigating the influence of rotation label noise, as well as discriminate instances without regard to image rotations. The resulting feature has a better generalization ability for more various tasks. Experimental results show that our model outperforms current state-of-the-art methods on standard self-supervised feature learning benchmarks.
引用
收藏
页码:10356 / 10366
页数:11
相关论文
共 50 条
  • [41] Randomly shuffled convolution for self-supervised representation learning
    Oh, Youngjin
    Jeon, Minkyu
    Ko, Dohwan
    Kim, Hyunwoo J.
    INFORMATION SCIENCES, 2023, 623 : 206 - 219
  • [42] Self-supervised representation learning for SAR change detection
    Davis, Eric K.
    Houglund, Ian
    Franz, Douglas
    Allen, Michael
    ALGORITHMS FOR SYNTHETIC APERTURE RADAR IMAGERY XXX, 2023, 12520
  • [43] AtmoDist: Self-supervised representation learning for atmospheric dynamics
    Hoffmann, Sebastian
    Lessig, Christian
    ENVIRONMENTAL DATA SCIENCE, 2023, 2
  • [44] Heuristic Attention Representation Learning for Self-Supervised Pretraining
    Van Nhiem Tran
    Liu, Shen-Hsuan
    Li, Yung-Hui
    Wang, Jia-Ching
    SENSORS, 2022, 22 (14)
  • [45] Self-supervised representation learning for surgical activity recognition
    Paysan, Daniel
    Haug, Luis
    Bajka, Michael
    Oelhafen, Markus
    Buhmann, Joachim M.
    INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2021, 16 (11) : 2037 - 2044
  • [46] Self-Supervised Learning With Segmental Masking for Speech Representation
    Yue, Xianghu
    Lin, Jingru
    Gutierrez, Fabian Ritter
    Li, Haizhou
    IEEE Journal on Selected Topics in Signal Processing, 2022, 16 (06): : 1367 - 1379
  • [47] Self-Supervised Motion Perception for Spatiotemporal Representation Learning
    Liu, Chang
    Yao, Yuan
    Luo, Dezhao
    Zhou, Yu
    Ye, Qixiang
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 34 (12) : 9832 - 9846
  • [48] Mixed Autoencoder for Self-supervised Visual Representation Learning
    Chen, Kai
    Liu, Zhili
    Hong, Lanqing
    Xu, Hang
    Li, Zhenguo
    Yeung, Dit-Yan
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 22742 - 22751
  • [49] Self-supervised Discriminative Representation Learning by Fuzzy Autoencoder
    Yang, Wenlu
    Wang, Hongjun
    Zhang, Yinghui
    Liu, Zehao
    Li, Tianrui
    ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2023, 14 (01)
  • [50] Video Face Clustering with Self-Supervised Representation Learning
    Sharma V.
    Tapaswi M.
    Saquib Sarfraz M.
    Stiefelhagen R.
    IEEE Transactions on Biometrics, Behavior, and Identity Science, 2020, 2 (02): : 145 - 157