Self-Supervised Representation Learning by Rotation Feature Decoupling

被引:125
|
作者
Feng, Zeyu [1 ]
Xu, Chang [1 ]
Tao, Dacheng [1 ]
机构
[1] Univ Sydney, UBTECH Sydney AI Ctr, Sch Comp Sci, FEIT, Darlington, NSW 2008, Australia
基金
澳大利亚研究理事会;
关键词
D O I
10.1109/CVPR.2019.01061
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We introduce a self-supervised learning method that focuses on beneficial properties of representation and their abilities in generalizing to real-world tasks. The method incorporates rotation invariance into the feature learning framework, one of many good and well-studied properties of visual representation, which is rarely appreciated or exploited by previous deep convolutional neural network based self-supervised representation learning methods. Specifically, our model learns a split representation that contains both rotation related and unrelated parts. We train neural networks by jointly predicting image rotations and discriminating individual instances. In particular, our model decouples the rotation discrimination from instance discrimination, which allows us to improve the rotation prediction by mitigating the influence of rotation label noise, as well as discriminate instances without regard to image rotations. The resulting feature has a better generalization ability for more various tasks. Experimental results show that our model outperforms current state-of-the-art methods on standard self-supervised feature learning benchmarks.
引用
收藏
页码:10356 / 10366
页数:11
相关论文
共 50 条
  • [1] Feature Decoupling in Self-supervised Representation Learning for Open Set Recognition
    Jia, Jingyun
    Chan, Philip K.
    2023 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN, 2023,
  • [2] Self-supervised Video Representation Learning by Context and Motion Decoupling
    Huang, Lianghua
    Liu, Yu
    Wang, Bin
    Pan, Pan
    Xu, Yinghui
    Jin, Rong
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 13881 - 13890
  • [3] Self-Supervised Learning Disentangled Group Representation as Feature
    Wang, Tan
    Yue, Zhongqi
    Huang, Jianqiang
    Sun, Qianru
    Zhang, Hanwang
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [4] Explainable rotation-invariant self-supervised representation learning ☆
    Singh, Devansh
    Marathe, Aboli
    Roy, Sidharth
    Walambe, Rahee
    Kotecha, Ketan
    METHODSX, 2024, 13
  • [5] On the (In)Efficiency of Acoustic Feature Extractors for Self-Supervised Speech Representation Learning
    Parcollet, Titouan
    Zhang, Shucong
    Ramos, Alberto Gil C. P.
    van Dalen, Rogier
    Bhattacharya, Sourav
    INTERSPEECH 2023, 2023, : 581 - 585
  • [6] Whitening for Self-Supervised Representation Learning
    Ermolov, Aleksandr
    Siarohin, Aliaksandr
    Sangineto, Enver
    Sebe, Nicu
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139
  • [7] Self-Supervised Representation Learning for CAD
    Jones, Benjamin T.
    Hu, Michael
    Kodnongbua, Milin
    Kim, Vladimir G.
    Schulz, Adriana
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 21327 - 21336
  • [8] On Feature Decorrelation in Self-Supervised Learning
    Hua, Tianyu
    Wang, Wenxiao
    Xue, Zihui
    Ren, Sucheng
    Wang, Yue
    Zhao, Hang
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 9578 - 9588
  • [9] Decoupling Anomaly Discrimination and Representation Learning: Self-supervised Learning for Anomaly Detection on Attributed Graph
    Hu, Yanming
    Chen, Chuan
    Deng, Bowen
    Lai, Yujing
    Lin, Hao
    Zheng, Zibin
    Bian, Jing
    DATA SCIENCE AND ENGINEERING, 2024, 9 (03) : 264 - 277
  • [10] IPCL: ITERATIVE PSEUDO-SUPERVISED CONTRASTIVE LEARNING TO IMPROVE SELF-SUPERVISED FEATURE REPRESENTATION
    Kumar, Sonal
    Phukan, Anirudh
    Sur, Arijit
    2024 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, ICASSP 2024, 2024, : 6270 - 6274