Low-energy ion beam synthesis of Ag endotaxial nanostructures in silicon

被引:2
|
作者
Nagarajappa, Kiran [1 ]
Guha, Puspendu [2 ,3 ]
Thirumurugan, Arun [2 ,4 ]
Satyam, Parlapalli V. [2 ,3 ]
Bhatta, Umananda M. [1 ]
机构
[1] Jyothy Inst Technol, Ctr Incubat Innovat Res & Consultancy, Bengaluru 560082, India
[2] Sachivalaya Marg, Inst Phys, Bhubaneswar 751005, India
[3] Homi Bhabha Natl Inst, Bombay 400085, Maharashtra, India
[4] Univ Chile, Dept Mech Engn, Adv Mat Lab, Santiago, Chile
来源
关键词
SURFACE-PLASMON RESONANCE; NOBLE-METAL NANOPARTICLES; SILVER NANOSTRUCTURES; TRANSITION; SUBSTRATE;
D O I
10.1007/s00339-018-1815-y
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Coherently, embedded metal nanostructures (endotaxial) are known to have potential applications concerning the areas of plasmonics, optoelectronics and thermoelectronics. Incorporating appropriate concentrations of metal atoms into crystalline silicon is critical for these applications. Therefore, choosing proper dose of low-energy ions, instead of depositing thin film as a source of metal atoms, helps in avoiding surplus concentration of metal atoms that diffuses into the silicon crystal. In this work, 30 keV silver negative ions are implanted into a SiO (x) /Si(100) at two different fluences: 1 x 10(15) and 2.5 x 10(15) Ag- ions/cm(2). Later, the samples are annealed at 700 A degrees C for 1 h in Ar atmosphere. Embedded silver nanostructures have been characterized using planar and cross-sectional TEM (XTEM) analysis. Planar TEM analysis shows the formation of mostly rectangular silver nanostructures following the fourfold symmetry of the substrate. XTEM analysis confirms the formation of prism-shaped silver nanostructures embedded inside crystalline silicon. Endotaxial nature of the embedded crystals has been discussed using selected area electron diffraction analysis.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Radiobiological effects of a low-energy ion beam on wheat
    L. Wu
    Zengliang Yu
    Radiation and Environmental Biophysics, 2001, 40 : 53 - 57
  • [42] Low-energy ion beam diagnostics: an integrated solution
    Adiguzel, A.
    Cetinkaya, H.
    Esen, S.
    Halis, D.
    Ilhan, T. B.
    Kilicgedik, A.
    Ogur, S.
    Oz, S.
    Ozbey, A.
    Ozcan, V. E.
    Unel, N. G.
    JOURNAL OF INSTRUMENTATION, 2024, 19 (03):
  • [43] Radiobiological effects of a low-energy ion beam on wheat
    Wu, LF
    Yu, ZL
    RADIATION AND ENVIRONMENTAL BIOPHYSICS, 2001, 40 (01) : 53 - 57
  • [44] Generation and transport of a low-energy intense ion beam
    Bystritskii, V
    Garate, E
    Rostoker, N
    Song, YX
    Van Drie, A
    Binderbauer, M
    Anderson, M
    DeBolt, N
    Walters, JK
    Morehouse, M
    Dettrick, S
    Qerushi, A
    Matvienko, V
    Petrov, A
    Isakov, I
    Shlapakovsky, A
    Polkovnikova, N
    IEEE TRANSACTIONS ON PLASMA SCIENCE, 2004, 32 (05) : 1986 - 1992
  • [45] ADVANCES IN LOW-ENERGY ION-BEAM TECHNOLOGY
    LAZNOVSKY, W
    RESEARCH-DEVELOPMENT, 1975, 26 (08): : 47 - &
  • [46] Transport of a Low-Energy Ion Beam with Ballistic Focusing
    Koval', T., V
    Tarakanov, V. P.
    PLASMA PHYSICS REPORTS, 2021, 47 (08) : 840 - 849
  • [47] Transport of a Low-Energy Ion Beam with Ballistic Focusing
    T. V. Koval’
    V. P. Tarakanov
    Plasma Physics Reports, 2021, 47 : 840 - 849
  • [48] The response of silicon detectors to low-energy ion implantation
    Hopf, T.
    Yang, C.
    Andresen, S. E.
    Jamieson, D. N.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2008, 20 (41)
  • [49] CHARACTERISTICS OF SILICON DOPED BY LOW-ENERGY ION IMPLANTATION
    MANCHESTER, KE
    SIBLEY, CB
    TRANSACTIONS OF THE METALLURGICAL SOCIETY OF AIME, 1966, 236 (03): : 379 - +
  • [50] Damage evolution in low-energy ion implanted silicon
    Karmouch, R.
    Anahory, Y.
    Mercure, J. -F.
    Bouilly, D.
    Chicoine, M.
    Bentoumi, G.
    Leonelli, R.
    Wang, Y. Q.
    Schiettekatte, F.
    PHYSICAL REVIEW B, 2007, 75 (07)