共 50 条
Identification of a binding site on human FGF-2 for fibrinogen
被引:25
|作者:
Peng, H
Sahni, A
Fay, P
Bellum, S
Prudovsky, I
Maciag, T
Francis, CW
机构:
[1] Univ Rochester, Sch Med & Dent, Hematol Oncol Unit, Dept Med, Rochester, NY 14642 USA
[2] Maine Med Ctr, Inst Res, Ctr Mol Med, Scarborough, ME USA
来源:
关键词:
D O I:
10.1182/blood-2003-08-2638
中图分类号:
R5 [内科学];
学科分类号:
1002 ;
100201 ;
摘要:
Endothelial cell adhesive interactions are mediated by both fibrinogen and fibrin, and growth is stimulated by fibroblast growth factor 2 (FGF-2). We have shown previously that FGF-2 binds specifically and with high affinity to fibrinogen and fibrin and that fibrinogen potentiates the proliferative capacity of FGF-2 and also protects it from proteolytic degradation. To further characterize this interaction we have performed FGF-2 mutagenesis to identify the interactive site. Because FGF-1 has a similar structure to FGF-2 but does not bind to fibrinogen, we used a strategy of cassette and site-directed mutagenesis, exchanging residues from FGF-1 and FGF-2 and correlating structural changes with fibrinogen binding. Two cassette interchange mutants, 2212 and 2211, contained either the third cassette or both the third and fourth cassettes from FGF-1, and neither exhibited any affinity for fibrinogen. Exchange of 5 residues (Phe95, Ser100, Asn102,Arg107, and Arg109) from FGF-2 into the corresponding sites in the third cassette of FGF-1 imparted high-affinity binding with apparent dissociation constants (K-d) of 5.3 nM and 8.6 nM, respectively, compared with 1.3 nM for wild-type FGF-2. We conclude that these 5 residues define a high-affinity binding site in FGF-2 for fibrinogen. (C) 2004 by The American Society of Hematology.
引用
收藏
页码:2114 / 2120
页数:7
相关论文