Seshadri Constants of K3 Surfaces of Degrees 6 and 8

被引:4
|
作者
Galati, Concettina [1 ]
Knutsen, Andreas Leopold [2 ]
机构
[1] Univ Calabria, Dipartimento Matemat, I-87036 Arcavacata Di Rende, CS, Italy
[2] Univ Bergen, Dept Math, Johs Brunsgt 12, N-5008 Bergen, Norway
关键词
PROJECTIVE MODELS; CURVES;
D O I
10.1093/imrn/rns174
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We compute Seshadri constants on K3 surfaces X of degrees 6 and 8. We also prove that if X is any embedded K3 surface of degree 2r-2 >= 8 in not containing lines, then 1 <epsilon(X)< 2 if and only if the homogeneous ideal of X is not generated by only quadrics (in which case epsilon(X) = 3/2).
引用
收藏
页码:4072 / 4084
页数:13
相关论文
共 50 条
  • [21] Seshadri constants on surfaces of general type
    Bauer, Thomas
    Szemberg, Tomasz
    MANUSCRIPTA MATHEMATICA, 2008, 126 (02) : 167 - 175
  • [22] Seshadri constants on surfaces of general type
    Thomas Bauer
    Tomasz Szemberg
    manuscripta mathematica, 2008, 126 : 167 - 175
  • [23] Seshadri constants and surfaces of minimal degree
    Syzdek, Wioletta
    Szemberg, Tomasz
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2009, 16 (05) : 953 - 959
  • [24] Seshadri Constants of Curve Configurations on Surfaces
    Hanumanthu, Krishna
    Roy, Praveen Kumar
    Subramaniam, Aditya
    TAIWANESE JOURNAL OF MATHEMATICS, 2024, 28 (06): : 1053 - 1071
  • [25] On the integrality of Seshadri constants of abelian surfaces
    Bauer, Thomas
    Grimm, Felix Fritz
    Schmidt, Maximilian
    EUROPEAN JOURNAL OF MATHEMATICS, 2020, 6 (04) : 1264 - 1275
  • [26] On K3 Surface Quotients of K3 or Abelian Surfaces
    Garbagnati, Alice
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2017, 69 (02): : 338 - 372
  • [27] An isoceny of K3 surfaces
    Van Geemen, B
    Top, J
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2006, 38 : 209 - 223
  • [28] DEGENERATION OF K3 SURFACES
    NISHIGUCHI, K
    JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 1988, 28 (02): : 267 - 300
  • [29] Noncommutative K3 surfaces
    Kim, H
    Lee, CY
    PHYSICS LETTERS B, 2002, 536 (1-2) : 154 - 160
  • [30] On elliptic K3 surfaces
    Shimada, I
    MICHIGAN MATHEMATICAL JOURNAL, 2000, 47 (03) : 423 - 446