Synergistic Action of Alkalis Improve the Quality Hemicellulose Extraction from Sugarcane Bagasse for the Production of Xylooligosaccharides

被引:16
|
作者
Kundu, Pranati [1 ,2 ]
Kansal, Sushil Kumar [2 ]
Elumalai, Sasikumar [1 ]
机构
[1] DBT Ctr Innovat & Appl Bioproc, Chem Engn Div, Mohali 140306, Punjab, India
[2] Panjab Univ, Dr SS Bhatnagar Univ Inst Chem Engn & Technol, Chandigarh 140014, India
关键词
Sugarcane bagasse; Hemicellulose; Response surface methodology; Alkaline treatment; Xylooligosaccharides; GRADED ETHANOL PRECIPITATION; CELLULOSE; LIGNIN;
D O I
10.1007/s12649-020-01235-7
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The present study demonstrates an effective alkaline protocol for the extraction of quality hemicellulose using NaOH and NH4OH combination from sugarcane bagasse for the production of xylooligosaacharides (XOs). For achieving maximum recovery of hemicellulose, the statistical optimization technique was adapted, while considering alkali concentration and temperature, as important process parameters, for all of the alkaline tested protocols like individual or mixed alkalis. The comparative study exposed that mixed alkalis promoted higher recovery of hemicellulose (68% wt xylose), which is relatively higher (up to 1.3-times) than the individual alkali protocols, such that it contained predominantly the xylose (xyl/ara ratio was 3.94) in the form of xylan. In perception, the synergistic action of different alkalis (weak and strong bases) have strongly influenced the selective cleavage of lignin-carbohydrate linkages, thereby enabling the higher release of hemicellulose under the modest reaction conditions (10% alkali conc. and 120 degrees C). Moreover, the analytical characterization witnessed that it is composed of majorly xylose with less or no undesired residual biomass constituents, including lignin. Upon evaluating the resultant hemicelluloses for XOs production via acidic hydrolysis, the hemicellulose obtained through the mixed alkalis protocol exhibited exceptional, resulting in similar to 13% wt XOs yield with a high degree of polymerization (2-4 units); it is relatively similar to 2.8-times higher than the result of other hemicelluloses. In addition, the formation of gaseous ammonia during the reaction of the mixed alkalis could potentially contribute to the reduction of overall processing cost through recovery and reuse strategy during the large-scale XOs production. [GRAPHICS] .
引用
收藏
页码:3147 / 3159
页数:13
相关论文
共 50 条
  • [21] Xylooligosaccharides Production from Alkali-Pretreated Sugarcane Bagasse Using Xylanases from Thermoascus aurantiacus
    Brienzo, Michel
    Carvalho, Walter
    Milagres, Adriane M. F.
    APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY, 2010, 162 (04) : 1195 - 1205
  • [22] Xylooligosaccharides Production from Alkali-Pretreated Sugarcane Bagasse Using Xylanases from Thermoascus aurantiacus
    Michel Brienzo
    Walter Carvalho
    Adriane M. F. Milagres
    Applied Biochemistry and Biotechnology, 2010, 162 : 1195 - 1205
  • [23] A Comparative Analysis for the Production of Xylooligosaccharides via Enzymatic Hydrolysis from Sugarcane Bagasse and Coconut Coir
    Khangwal, Ishu
    Shukla, Pratyoosh
    INDIAN JOURNAL OF MICROBIOLOGY, 2022, 62 (02) : 317 - 321
  • [24] A Comparative Analysis for the Production of Xylooligosaccharides via Enzymatic Hydrolysis from Sugarcane Bagasse and Coconut Coir
    Ishu Khangwal
    Pratyoosh Shukla
    Indian Journal of Microbiology, 2022, 62 : 317 - 321
  • [25] Pretreatment of sugarcane bagasse hemicellulose hydrolysate for xylitol production by Candida guilliermondii
    Alves, LA
    Felipe, MGA
    Silva, JBAE
    Silva, SS
    Prata, AMR
    APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY, 1998, 70-2 (1) : 89 - 98
  • [26] Pretreatment of sugarcane bagasse hemicellulose hydrolysate for xylitol production byCandida guilliermondii
    Lourdes A. Alves
    Maria G. A. Felipe
    JoÃo B. Almeida E. Silva
    Silvio S. Silva
    Arnaldo M. R. Prata
    Applied Biochemistry and Biotechnology, 1998, 70-72 : 89 - 98
  • [27] Sugarcane bagasse hemicellulose hydrolysate for ethanol production by acid recovery process
    Cheng, Ke-Ke
    Cai, Bai-Yan
    Zhang, Jian-An
    Ling, Hong-Zhi
    Zhou, Yu-He
    Ge, Jing-Ping
    Xu, Jing-Ming
    BIOCHEMICAL ENGINEERING JOURNAL, 2008, 38 (01) : 105 - 109
  • [28] Production and characterization of xylooligosaccharides from sugarcane bagasse using response surface methodology and its prebiotic properties
    Kathiresan, Nagamani
    Karuppiah, Vijay
    Gopal, Lingesh
    Abraham, David Ravindran
    Thangavel, Kavitha
    BIOMASS CONVERSION AND BIOREFINERY, 2024, : 9337 - 9351
  • [29] Biohydrogen production using xylose or xylooligosaccharides derived from sugarcane bagasse obtained by hydrothermal and acid pretreatments
    Vasconcelos de Sa, Livian Ribeiro
    Faber, Mariana de Oliveira
    da Silva, Ayla Sant'Ana
    Cammarota, Magali Christe
    Ferreira-Leitao, Viridiana Santana
    RENEWABLE ENERGY, 2020, 146 : 2408 - 2415
  • [30] Biohydrogen production using xylose or xylooligosaccharides derived from sugarcane bagasse obtained by hydrothermal and acid pretreatments
    de Sá, Lívian Ribeiro Vasconcelos
    Faber, Mariana de Oliveira
    da Silva, Ayla Sant'Ana
    Cammarota, Magali Christe
    Ferreira-Leitão, Viridiana Santana
    Ferreira-Leitão, Viridiana Santana (viridiana.leitao@int.gov.br), 1600, Elsevier Ltd (146): : 2408 - 2415