Using RNA-Seq Data to Evaluate Reference Genes Suitable for Gene Expression Studies in Soybean

被引:61
|
作者
Yim, Aldrin Kay-Yuen [1 ,2 ,3 ]
Wong, Johanna Wing-Hang [1 ,2 ]
Ku, Yee-Shan [1 ,2 ]
Qin, Hao [1 ,2 ,3 ]
Chan, Ting-Fung [1 ,2 ,3 ]
Lam, Hon-Ming [1 ,2 ]
机构
[1] Chinese Univ Hong Kong, Sch Life Sci, Shatin, Hong Kong, Peoples R China
[2] Chinese Univ Hong Kong, Ctr Soybean Res, Partner State Key Lab Agrobiotechnol, Shatin, Hong Kong, Peoples R China
[3] Chinese Univ Hong Kong, Hong Kong Bioinformat Ctr, Shatin, Hong Kong, Peoples R China
来源
PLOS ONE | 2015年 / 10卷 / 09期
关键词
KNOWLEDGE-BASE SOYKB; TIME RT-PCR; HOUSEKEEPING GENES; WEB RESOURCE; NORMALIZATION; VALIDATION; IDENTIFICATION; TOLERANCE; SELECTION; SEQUENCE;
D O I
10.1371/journal.pone.0136343
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Differential gene expression profiles often provide important clues for gene functions. While reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) is an important tool, the validity of the results depends heavily on the choice of proper reference genes. In this study, we employed new and published RNA-sequencing (RNA-Seq) datasets (26 sequencing libraries in total) to evaluate reference genes reported in previous soybean studies. In silico PCR showed that 13 out of 37 previously reported primer sets have multiple targets, and 4 of them have amplicons with different sizes. Using a probabilistic approach, we identified new and improved candidate reference genes. We further performed 2 validation tests (with 26 RNA samples) on 8 commonly used reference genes and 7 newly identified candidates, using RT-qPCR. In general, the new candidate reference genes exhibited more stable expression levels under the tested experimental conditions. The three newly identified candidate reference genes Bic-C2, F-box protein2, and VPS-like gave the best overall performance, together with the commonly used ELF1b. It is expected that the proposed probabilistic model could serve as an important tool to identify stable reference genes when more soybean RNA-Seq data from different growth stages and treatments are used.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Comparison between RNA-Seq and Affymetrix gene expression data
    Fumagalli, D.
    Haibe-Kains, B.
    Michiels, S.
    Brown, D. N.
    Gacquer, D.
    Majjaj, S.
    Salgado, R.
    Larsimont, D.
    Detour, V.
    Piccart, M.
    Sotiriou, C.
    Desmedt, C.
    CANCER RESEARCH, 2012, 72
  • [22] LbCML38 and LbRH52, two reference genes derived from RNA-Seq data suitable for assessing gene expression in Lycium barbarum L.
    Lei Gong
    Yajun Yang
    Yuchao Chen
    Jing Shi
    Yuxia Song
    Hongxia Zhang
    Scientific Reports, 6
  • [23] Bulk Tissue Gene Expression Deconvolution Using Single Cell RNA-Seq Data
    Wang, X.
    Li, M.
    Zhang, N.
    HUMAN HEREDITY, 2017, 83 (01) : 51 - 51
  • [24] Effect of Low-Expression Gene Filtering on Detection of Differentially Expressed Genes in RNA-Seq Data
    Sha, Ying
    Phan, John H.
    Wang, May D.
    2015 37TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2015, : 6461 - 6464
  • [25] Reference genes for RT-qPCR studies in Corynebacterium pseudotuberculosis identified through analysis of RNA-seq data
    Carvalho, Daiane M.
    de Sa, Pablo H.
    Castro, Thiago L. P.
    Carvalho, Rodrigo D.
    Pinto, Anne
    Gil, Danilo J. P.
    Bagano, Priscilla
    Bastos, Bruno
    Costa, Lilia F. M.
    Meyer, Roberto
    Silva, Artur
    Azevedo, Vasco
    Ramos, Rommel T. J.
    Pacheco, Luis G. C.
    ANTONIE VAN LEEUWENHOEK INTERNATIONAL JOURNAL OF GENERAL AND MOLECULAR MICROBIOLOGY, 2014, 106 (04): : 605 - 614
  • [26] Reference genes for RT-qPCR studies in Corynebacterium pseudotuberculosis identified through analysis of RNA-seq data
    Daiane M. Carvalho
    Pablo H. de Sá
    Thiago L. P. Castro
    Rodrigo D. Carvalho
    Anne Pinto
    Danilo J. P. Gil
    Priscilla Bagano
    Bruno Bastos
    Lilia F. M. Costa
    Roberto Meyer
    Artur Silva
    Vasco Azevedo
    Rommel T. J. Ramos
    Luis G. C. Pacheco
    Antonie van Leeuwenhoek, 2014, 106 : 605 - 614
  • [27] IAOseq: inferring abundance of overlapping genes using RNA-seq data
    Sun, Hong
    Yang, Shuang
    Tun, Liangliang
    Li, Yixue
    BMC BIOINFORMATICS, 2015, 16
  • [28] IAOseq: inferring abundance of overlapping genes using RNA-seq data
    Hong Sun
    Shuang Yang
    Liangliang Tun
    Yixue Li
    BMC Bioinformatics, 16
  • [29] Predicting gene regulatory networks of soybean nodulation from RNA-Seq transcriptome data
    Mingzhu Zhu
    Jeremy L Dahmen
    Gary Stacey
    Jianlin Cheng
    BMC Bioinformatics, 14
  • [30] Predicting gene regulatory networks of soybean nodulation from RNA-Seq transcriptome data
    Zhu, Mingzhu
    Dahmen, Jeremy L.
    Stacey, Gary
    Cheng, Jianlin
    BMC BIOINFORMATICS, 2013, 14