Positivity of Ricci curvature under the Kahler-Ricci flow

被引:8
|
作者
Knopf, D [1 ]
机构
[1] Univ Texas, Dept Math, Austin, TX 78712 USA
基金
美国国家科学基金会;
关键词
Kahler manifolds; Kahler-Ricci flow; Ricci curvature; invariant and attractive curvature cones;
D O I
10.1142/S0219199706002052
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In each complex dimension n >= 2, we construct complete Kahler manifolds of bounded curvature and non-negative Ricci curvature whose Kahler-Ricci evolutions immediately acquire Ricci curvature of mixed sign.
引用
收藏
页码:123 / 133
页数:11
相关论文
共 50 条
  • [41] Non-Kahler Ricci flow singularities modeled on Kahler-Ricci solitons
    Isenberg, James
    Knopf, Dan
    Sesum, Natasa
    PURE AND APPLIED MATHEMATICS QUARTERLY, 2019, 15 (02) : 749 - 784
  • [42] The Kahler-Ricci Flow on Projective Bundles
    Song, Jian
    Szekelyhidi, Gabor
    Weinkove, Ben
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2013, 2013 (02) : 243 - 257
  • [43] On the Kahler-Ricci flow on complex surfaces
    Phong, D. H.
    Sturm, Jacob
    PURE AND APPLIED MATHEMATICS QUARTERLY, 2005, 1 (02) : 405 - 413
  • [44] Limits of solutions to the Kahler-Ricci flow
    Cao, HD
    JOURNAL OF DIFFERENTIAL GEOMETRY, 1997, 45 (02) : 257 - 272
  • [45] The Kahler-Ricci flow on pseudoconvex domains
    Ge, Huabin
    Lin, Aijin
    Shen, Liangming
    MATHEMATICAL RESEARCH LETTERS, 2019, 26 (06) : 1603 - 1627
  • [46] An Introduction to the Kahler-Ricci Flow Preface
    Boucksom, S.
    Eyssidieux, P.
    Guedj, V.
    INTRODUCTION TO THE KAHLER-RICCI FLOW, 2013, 2086 : V - VI
  • [47] Regularizing Properties of the Kahler-Ricci Flow
    Boucksom, Sebastien
    Guedj, Vincent
    INTRODUCTION TO THE KAHLER-RICCI FLOW, 2013, 2086 : 189 - 237
  • [48] THE KAHLER-RICCI FLOW AND OPTIMAL DEGENERATIONS
    Dervan, Ruadhai
    Szekelyhidi, Gabor
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2020, 116 (01) : 187 - 203
  • [49] An Introduction to the Kahler-Ricci Flow Introduction
    Boucksom, Sebastien
    Eyssidieux, Philippe
    Guedj, Vincent
    INTRODUCTION TO THE KAHLER-RICCI FLOW, 2013, 2086 : 1 - 6
  • [50] On the convergence of a modified Kahler-Ricci flow
    Yuan, Yuan
    MATHEMATISCHE ZEITSCHRIFT, 2011, 268 (1-2) : 281 - 289