Quasi-universal bandwidth selection for kernel density estimators

被引:11
|
作者
Wegkamp, MH [1 ]
机构
[1] Yale Univ, Dept Stat, New Haven, CT 06520 USA
关键词
asymptotic optimality; data splitting; empirical processes; kernel density estimators; projection estimators; universal bandwidth selection;
D O I
10.2307/3315649
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let (f) over cap(n), h denote the kernel density estimate based on a sample of size n drawn from an unknown density f. Using techniques from L-2 projection density estimators, the author shows how to construct a data-driven estimator (f) over cap(n), (H) which satisfies (sup)(bounded) lim sup(n --> infinity) integral E\(f) over cap(n),(H)(x) - f(x)\(2)dx/inf(h > 0)integral E\(f) over cap(n,h)(x)(\)(2)dx = 1. This paper is inspired by work of Stone (1984), Devroye and Lugosi (1996) and BirgC and Massart (1997).
引用
收藏
页码:409 / 420
页数:12
相关论文
共 50 条
  • [31] Optimal bandwidth selection for semi-recursive kernel regression estimators
    Slaoui, Yousri
    STATISTICS AND ITS INTERFACE, 2016, 9 (03) : 375 - 388
  • [32] Infill Asymptotics and Bandwidth Selection for Kernel Estimators of Spatial Intensity Functions
    van Lieshout, M. N. M.
    METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY, 2020, 22 (03) : 995 - 1008
  • [33] Infill Asymptotics and Bandwidth Selection for Kernel Estimators of Spatial Intensity Functions
    M. N. M. van Lieshout
    Methodology and Computing in Applied Probability, 2020, 22 : 995 - 1008
  • [34] Explaining why simple liquids are quasi-universal
    Bacher, Andreas K.
    Schroder, Thomas B.
    Dyre, Jeppe C.
    NATURE COMMUNICATIONS, 2014, 5
  • [35] Quasi-Universal Length Scale of River Anabranches
    Ragno, Niccolo
    Redolfi, Marco
    Tubino, Marco
    GEOPHYSICAL RESEARCH LETTERS, 2022, 49 (16)
  • [36] Living orthogonally: quasi-universal extra dimensions
    Arun, Mathew Thomas
    Choudhury, Debajyoti
    Sachdeva, Divya
    JOURNAL OF HIGH ENERGY PHYSICS, 2019, 2019 (01)
  • [37] DIRECT LIMITS IN QUASI-UNIVERSAL MODEL CLASSES
    KAISER, K
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1975, 9 (36): : 585 - 588
  • [38] Weighted uniform consistency of kernel density estimators with general bandwidth sequences
    Dony, Julia
    Einmahl, Uwe
    ELECTRONIC JOURNAL OF PROBABILITY, 2006, 11 : 844 - 859
  • [39] Online Anomaly Detection With Bandwidth Optimized Hierarchical Kernel Density Estimators
    Kerpicci, Mine
    Ozkan, Huseyin
    Kozat, Suleyman Serdar
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2021, 32 (09) : 4253 - 4266
  • [40] Explaining why simple liquids are quasi-universal
    Andreas K. Bacher
    Thomas B. Schrøder
    Jeppe C. Dyre
    Nature Communications, 5