An Improved Vision-Based Algorithm for Unmanned Aerial Vehicles Autonomous Landing

被引:9
|
作者
Zhao, Yunji [1 ]
Pei, Hailong [1 ]
机构
[1] S China Univ Technol, Coll Automat Sci & Engn, Guangzhou 510641, Guangdong, Peoples R China
关键词
autonomous landing; camshaft; color histogram; SURF;
D O I
10.1016/j.phpro.2012.05.157
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
In vision-based autonomous landing system of UAV, the efficiency of target detecting and tracking will directly affect the control system. The improved algorithm of SURF(Speed Up Robust Features) will resolve the problem which is the inefficiency of the SURF algorithm in the autonomous landing system. The improved algorithm is composed of three steps: first, detect the region of the target using the Camshift; second, detect the feature points in the region of the above acquired using the SURF algorithm; third, do the matching between the template target and the region of target in frame. The results of experiment and theoretical analysis testify the efficiency of the algorithm. (C) 2012 Published by Elsevier B.V. Selection and/or peer review under resposibility of ICMPBE International Committee
引用
收藏
页码:935 / 941
页数:7
相关论文
共 50 条
  • [21] Recognition of a landing platform for unmanned aerial vehicles by using computer vision-based techniques
    Garcia-Pulido, J. A.
    Pajares, G.
    Dormido, S.
    de la Cruz, J. M.
    EXPERT SYSTEMS WITH APPLICATIONS, 2017, 76 : 152 - 165
  • [22] Vision based autonomous landing of an unmanned aerial vehicle
    Anitha, G.
    Kumar, R. N. Gireesh
    INTERNATIONAL CONFERENCE ON MODELLING OPTIMIZATION AND COMPUTING, 2012, 38 : 2250 - 2256
  • [23] Eagle Vision-Based Coordinate Landing Control Framework of Unmanned Aerial Vehicles on an Unmanned Surface Vehicle
    Yang Yuan
    Xiaobin Xu
    Haibin Duan
    Zhigang Zeng
    Dukun Xu
    Rujia Chen
    Tongyan Wu
    Guidance,Navigation and Control, 2022, (04) : 114 - 125
  • [24] Vision-based Autonomous Landing Control for Unmanned Helicopters
    Marantos, Panos
    Karras, George C.
    Vlantis, Panagiotis
    Kyriakopoulos, Kostas J.
    JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS, 2018, 92 (01) : 145 - 158
  • [25] Vision-based Autonomous Landing Control for Unmanned Helicopters
    Panos Marantos
    George C. Karras
    Panagiotis Vlantis
    Kostas J. Kyriakopoulos
    Journal of Intelligent & Robotic Systems, 2018, 92 : 145 - 158
  • [26] Vision-Based Teleoperation of Unmanned Aerial and Ground Vehicles
    Ha, ChangSu
    Lee, Dongjun
    2013 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2013, : 1465 - 1470
  • [27] Vision-Based Indoor Localization for Unmanned Aerial Vehicles
    Lee, Jeong-Oog
    Kang, Taesam
    Lee, Keun-Hwan
    Im, Sung Kyu
    Park, Jungkeun
    JOURNAL OF AEROSPACE ENGINEERING, 2011, 24 (03) : 373 - 377
  • [28] Vision-Based SLAM System for Unmanned Aerial Vehicles
    Munguia, Rodrigo
    Urzua, Sarquis
    Bolea, Yolanda
    Grau, Antoni
    SENSORS, 2016, 16 (03)
  • [29] Vision-based Absolute Localization for Unmanned Aerial Vehicles
    Yol, Aurelien
    Delabarre, Bertrand
    Dame, Amaury
    Dartois, Jean-Emile
    Marchand, Eric
    2014 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS 2014), 2014, : 3429 - 3434
  • [30] A Vision-Based Auxiliary System of Multirotor Unmanned Aerial Vehicles for Autonomous Rendezvous and Docking
    Zhong, Dexing
    Zhang, Xuefei
    Sun, Haotian
    Ren, Zhigang
    Han, Jiuqiang
    2016 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2016, : 4586 - 4592