Spacetime geometry from algebra: spin foam models for non-perturbative quantum gravity

被引:138
|
作者
Oriti, D
机构
[1] Univ Cambridge, Dept Appl Math & Theoret Phys, Ctr Math Sci, Cambridge CB3 0WA, England
[2] Univ Cambridge Girton Coll, Cambridge CB3 0JG, England
关键词
D O I
10.1088/0034-4885/64/12/203
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This is an introduction to spin foam models for non-perturbative quantum gravity, an approach that lies at the point of convergence of many different research areas, including loop quantum gravity, topological quantum field theories, path integral quantum gravity, lattice field theory, matrix models, category theory and statistical mechanics. We describe the general formalism and ideas of spin foam models, the picture of quantum geometry emerging from them, and give a review of the results obtained so far, in both the Euclidean and Lorentzian cases. We focus in particular on the Barrett-Crane model for four-dimensional quantum gravity.
引用
收藏
页码:1703 / 1757
页数:55
相关论文
共 50 条
  • [31] Comparison of perturbative and non-perturbative methods in f(R) gravity
    K. Nobleson
    Amna Ali
    Sarmistha Banik
    The European Physical Journal C, 2022, 82
  • [32] Comparison of perturbative and non-perturbative methods in f (R) gravity
    Nobleson, K.
    Ali, Amna
    Banik, Sarmistha
    EUROPEAN PHYSICAL JOURNAL C, 2022, 82 (01):
  • [33] Non-perturbative effects in spin glasses
    Castellana, Michele
    Parisi, Giorgio
    SCIENTIFIC REPORTS, 2015, 5
  • [34] Spacetime geometry in higher spin gravity
    Martin Ammon
    Michael Gutperle
    Per Kraus
    Eric Perlmutter
    Journal of High Energy Physics, 2011
  • [35] Spacetime geometry in higher spin gravity
    Ammon, Martin
    Gutperle, Michael
    Kraus, Per
    Perlmutter, Eric
    JOURNAL OF HIGH ENERGY PHYSICS, 2011, (10):
  • [36] Spin foam models for quantum gravity from lattice path integrals
    Bonzom, Valentin
    PHYSICAL REVIEW D, 2009, 80 (06)
  • [37] NON-PERTURBATIVE QUANTUM FIELD THEORY
    BARRY M. MCCOY
    吴大峻
    Science China Mathematics, 1979, (09) : 1021 - 1032
  • [38] Non-perturbative spectrum of non-local gravity
    Calcagni, Gianluca
    Modesto, Leonardo
    Nardelli, Giuseppe
    PHYSICS LETTERS B, 2019, 795 : 391 - 397
  • [39] On non-perturbative analysis of massive and bimetric gravity
    Golovnev, Alexey
    II RUSSIAN-SPANISH CONGRESS ON PARTICLE AND NUCLEAR PHYSICS AT ALL SCALES, ASTROPARTICLE PHYSICS AND COSMOLOGY, 2014, 1606 : 299 - 303
  • [40] Non-perturbative correction on the black hole geometry
    Pourhassan, Behnam
    Farahani, Hoda
    Kazemian, Farideh
    Sakalli, Izzet
    Upadhyay, Sudhaker
    Singh, Dharm Veer
    PHYSICS OF THE DARK UNIVERSE, 2024, 44