Quantifying Uncertainties in N2O Emission Due to N Fertilizer Application in Cultivated Areas

被引:73
|
作者
Philibert, Aurore [1 ,2 ]
Loyce, Chantal [1 ,2 ]
Makowski, David [1 ,2 ]
机构
[1] INRA, UMR Agron 211, F-78850 Thiverval Grignon, France
[2] AgroParisTech, UMR Agron 211, Thiverval Grignon, France
来源
PLOS ONE | 2012年 / 7卷 / 11期
关键词
GREENHOUSE-GAS EMISSIONS; NITROUS-OXIDE EMISSIONS; AGRICULTURAL SOILS; TEMPERATE;
D O I
10.1371/journal.pone.0050950
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Nitrous oxide (N2O) is a greenhouse gas with a global warming potential approximately 298 times greater than that of CO2. In 2006, the Intergovernmental Panel on Climate Change (IPCC) estimated N2O emission due to synthetic and organic nitrogen (N) fertilization at 1% of applied N. We investigated the uncertainty on this estimated value, by fitting 13 different models to a published dataset including 985 N2O measurements. These models were characterized by (i) the presence or absence of the explanatory variable "applied N", (ii) the function relating N2O emission to applied N (exponential or linear function), (iii) fixed or random background (i.e. in the absence of N application) N2O emission and (iv) fixed or random applied N effect. We calculated ranges of uncertainty on N2O emissions from a subset of these models, and compared them with the uncertainty ranges currently used in the IPCC-Tier 1 method. The exponential models outperformed the linear models, and models including one or two random effects outperformed those including fixed effects only. The use of an exponential function rather than a linear function has an important practical consequence: the emission factor is not constant and increases as a function of applied N. Emission factors estimated using the exponential function were lower than 1% when the amount of N applied was below 160 kg N ha(-1). Our uncertainty analysis shows that the uncertainty range currently used by the IPCC-Tier 1 method could be reduced.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] N2O emission from fertilizer use
    Lægreid, M
    Aastveit, AH
    NON-C02 GREENHOUSE GASES: SCIENTIFIC UNDERSTANDING, CONTROL OPTIONS AND POLICY ASPECTS, 2002, : 233 - 238
  • [2] Effect of long-term compost and inorganic fertilizer application on background N2O and fertilizer-induced N2O emissions from an intensively cultivated soil
    Ding, Weixin
    Luo, Jiafa
    Li, Jie
    Yu, Hongyan
    Fan, Jianling
    Liu, Deyan
    SCIENCE OF THE TOTAL ENVIRONMENT, 2013, 465 : 115 - 124
  • [3] Prospects of N2O emission regulations in the European fertilizer industry
    Perez-Ramirez, Javier
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2007, 70 (1-4) : 31 - 35
  • [4] Effect of Organic Fertilizer on N2O Emission in Yellow Cornfield
    Jiang Yuzhou
    Liu Qingli
    Zhang Yungui
    Li Zhihong
    Zou Yan
    Zhu Jingwei
    Shi Junxiong
    Wang Peng
    INTERNATIONAL JOURNAL OF AGRICULTURE AND BIOLOGY, 2018, 20 (01) : 215 - 220
  • [5] Indirect N2O emission due to atmospheric N deposition for the Netherlands
    van der Gon, HD
    Bleeker, A
    ATMOSPHERIC ENVIRONMENT, 2005, 39 (32) : 5827 - 5838
  • [6] Quantifying soil N pools and N2O emissions after application of chemical fertilizer and straw to a typical chernozem soil
    Bai, Jinshun
    Qiu, Shaojun
    Jin, Liang
    Wei, Dan
    Xu, Xinpeng
    Zhao, Shicheng
    He, Ping
    Wang, Ligang
    Christie, Peter
    Zhou, Wei
    BIOLOGY AND FERTILITY OF SOILS, 2020, 56 (03) : 319 - 329
  • [7] Quantifying soil N pools and N2O emissions after application of chemical fertilizer and straw to a typical chernozem soil
    Jinshun Bai
    Shaojun Qiu
    Liang Jin
    Dan Wei
    Xinpeng Xu
    Shicheng Zhao
    Ping He
    Ligang Wang
    Peter Christie
    Wei Zhou
    Biology and Fertility of Soils, 2020, 56 : 319 - 329
  • [8] Biochar and biochar with N-fertilizer affect soil N2O emission in Haplic Luvisol
    Horak, Jan
    Kondrlova, Elena
    Igaz, Dusan
    Simansky, Vladimir
    Felber, Raphael
    Lukac, Martin
    Balashov, Eugene V.
    Buchkina, Natalya P.
    Rizhiya, Elena Y.
    Jankowski, Michal
    BIOLOGIA, 2017, 72 (09) : 995 - 1001
  • [9] Improving N2O emission estimates with the global N2O database
    Dorich, Christopher D.
    Conant, Richard T.
    Albanito, Fabrizio
    Butterbach-Bahl, Klaus
    Grace, Peter
    Scheer, Clemens
    Snow, Val O.
    Vogeler, Iris
    van der Weerden, Tony J.
    CURRENT OPINION IN ENVIRONMENTAL SUSTAINABILITY, 2020, 47 : 13 - 20
  • [10] Biochar and biochar with N-fertilizer affect soil N2O emission in Haplic Luvisol
    Ján Horák
    Elena Kondrlová
    Dušan Igaz
    Vladimír Šimanský
    Raphael Felber
    Martin Lukac
    Eugene V. Balashov
    Natalya P. Buchkina
    Elena Y. Rizhiya
    Michal Jankowski
    Biologia, 2017, 72 : 995 - 1001