Analysis of degenerate elliptic operators of Grusin type

被引:32
|
作者
Robinson, Derek W. [1 ]
Sikora, Adam [2 ]
机构
[1] Australian Natl Univ, Inst Math Sci, Canberra, ACT 0200, Australia
[2] New Mexico State Univ, Dept Math Sci, Las Cruces, NM 88003 USA
基金
澳大利亚研究理事会;
关键词
D O I
10.1007/s00209-007-0284-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We analyse degenerate, second-order, elliptic operators H in divergence form on L-2(R-n x R-m). We assume the coefficients are real symmetric and a(1)H delta >= H >= a(2)H delta for some a(1), a(2) > 0 where H-delta = -del(x1) . (c(delta 1,delta'1)(x(1)) del(x1)) - c(delta 2),(delta'2) (x(1)) del(2)(x2). Here x(1) is an element of R-n, x(2) is an element of R-m and c(delta i),(delta i') are positive measurable functions such that c(delta i),(delta i') (x) behaves like vertical bar x vertical bar(delta i) as x -> 0 and vertical bar x vertical bar(delta i') as x -> infinity with delta(1,) delta(')(1) is an element of [0,1 > and delta(2), delta(')(2) >= 0. Our principal results state that the submarkovian semigroup S-t = e(-tH) is conservative and its kernel K-t satisfies bounds 0 <= K-t (x; y) <= a (vertical bar B(x; t(1/2))vertical bar vertical bar B(y; t(1/2))vertical bar)(-1/2) where vertical bar B(x; r)vertical bar denotes the volume of the ball B(x; r) centred at x with radius r measured with respect to the Riemannian distance associated with H. The proofs depend on detailed subelliptic estimations on H, a precise characterization of the Riemannian distance and the corresponding volumes and wave equation techniques which exploit the finite speed of propagation. We discuss further implications of these bounds and give explicit examples that show the kernel is not necessarily strictly positive, nor continuous.
引用
收藏
页码:475 / 508
页数:34
相关论文
共 50 条
  • [11] Invertibility for a class of degenerate elliptic operators
    Delgado, Julio
    Zamudio, Alex M.
    JOURNAL OF PSEUDO-DIFFERENTIAL OPERATORS AND APPLICATIONS, 2010, 1 (02) : 207 - 231
  • [12] Invertibility for a class of degenerate elliptic operators
    Julio Delgado
    Alex M. Zamudio
    Journal of Pseudo-Differential Operators and Applications, 2010, 1 : 207 - 231
  • [13] Degenerate elliptic operators with coefficients in EXP
    Formica, MR
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 2001, 4A (03): : 451 - 454
  • [14] Markov uniqueness of degenerate elliptic operators
    Robinson, Derek W.
    Sikora, Adam
    ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2011, 10 (03) : 683 - 710
  • [15] Degenerate elliptic operators in one dimension
    Derek W. Robinson
    Adam Sikora
    Journal of Evolution Equations, 2010, 10 : 731 - 759
  • [16] PARTIAL HYPOELLIPTICITY FOR ELLIPTIC DEGENERATE OPERATORS
    ROLLAND, J
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1977, 284 (15): : 885 - 888
  • [17] DEGENERATE ELLIPTIC-OPERATORS AS REGULARIZERS
    PEDERSON, RN
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 280 (02) : 533 - 553
  • [18] PARABOLIC PROBLEM FOR DEGENERATE ELLIPTIC OPERATORS
    SABLETOUGERON, M
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1978, 287 (09): : 703 - 706
  • [19] ON THE EIKONAL EQUATION FOR DEGENERATE ELLIPTIC OPERATORS
    Albano, Paolo
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 140 (05) : 1739 - 1747
  • [20] Dirichlet forms and degenerate elliptic operators
    ter Elst, A. F. M.
    Robinson, Derek W.
    Sikora, Adam
    Zhu, Yueping
    PARTIAL DIFFERENTIAL EQUATIONS AND FUNCTIONAL ANALYSIS: THE PHILIPPE CLEMENT FESTSCHRIFT, 2006, 168 : 73 - +