Bounds in polynomial rings over Artinian local rings

被引:1
|
作者
Schoutens, Hans [1 ]
机构
[1] CUNY, Dept Math, New York, NY 10016 USA
来源
MONATSHEFTE FUR MATHEMATIK | 2007年 / 150卷 / 03期
关键词
uniform bounds; Artinian rings;
D O I
10.1007/s00605-006-0439-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be a (mixed characteristic) Artinian local ring of length l and let X be an n-tuple of variables. We prove that several algebraic constructions in the ring R[X] admit uniform bounds on the degrees of their output in terms of l, n and the degrees of the input. For instance, if I is an ideal in R[X] generated by polynomials g(i) of degree at most d and if f is a polynomial of degree at most d belonging to I, then f = q(1)f(1) + center dot center dot center dot + q(s)f (s) , for some q(i) of degree bounded in terms of d, l and n only. Similarly, the module of syzygies of I is generated by tuples all of whose entries have degree bounded in terms of d, l and n only.
引用
收藏
页码:249 / 261
页数:13
相关论文
共 50 条
  • [31] POLYNOMIAL RINGS AND HI-LOCAL RINGS
    RATLIFF, LJ
    PACIFIC JOURNAL OF MATHEMATICS, 1978, 75 (02) : 497 - 510
  • [32] COHERENCE OF POLYNOMIAL RINGS AND BOUNDS IN POLYNOMIAL IDEALS
    SABBAGH, G
    JOURNAL OF ALGEBRA, 1974, 31 (03) : 499 - 507
  • [34] Differential polynomial rings over rings satisfying a polynomial identity
    Bell, Jason P.
    Madill, Blake W.
    Shinko, Forte
    JOURNAL OF ALGEBRA, 2015, 423 : 28 - 36
  • [35] SKEW POLYNOMIAL RINGS OVER SEMIPRIME RINGS
    Hong, Chan Yong
    Kim, Nam Kyun
    Lee, Yang
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2010, 47 (05) : 879 - 897
  • [36] A note on polynomial rings over nil rings
    Chebotar, M. A.
    Ke, W. -F.
    Lee, P. -H.
    Puczylowski, E. R.
    MODULES AND COMODULES, 2008, : 169 - +
  • [37] On a property of polynomial rings over reversible rings
    Jin, Hai-lan
    Kim, Hong Kee
    Kwak, Tai Keun
    Lee, Yang
    Piao, Zhelin
    COMMUNICATIONS IN ALGEBRA, 2019, 47 (02) : 836 - 851
  • [38] RINGS OVER WHICH POLYNOMIAL RINGS ARE NI
    Han, Juncheol
    Lee, Yang
    Yang, Sung Pil
    CONTEMPORARY RING THEORY 2011, 2012, : 1 - 9
  • [39] SKEW POLYNOMIAL RINGS OVER SEMISIMPLE RINGS
    JATEGAONKAR, AV
    JOURNAL OF ALGEBRA, 1971, 19 (03) : 315 - +
  • [40] POLYNOMIAL RINGS OVER FINITE DIMENSIONAL RINGS
    SHOCK, RC
    PACIFIC JOURNAL OF MATHEMATICS, 1972, 42 (01) : 251 - &