Renormalization group approach to oscillator synchronization

被引:14
|
作者
Kogan, Oleg [1 ]
Rogers, Jeffrey L.
Cross, M. C. [2 ]
Refael, G. [2 ]
机构
[1] CALTECH, Dept Mat Sci, Pasadena, CA 91125 USA
[2] CALTECH, Dept Phys, Pasadena, CA 91125 USA
基金
美国国家科学基金会;
关键词
nonlinear dynamical systems; oscillators; renormalisation; synchronisation; COUPLED NONLINEAR OSCILLATORS; LATTICES; LOCKING;
D O I
10.1103/PhysRevE.80.036206
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We develop a renormalization group method to investigate synchronization clusters in a one-dimensional chain of nearest-neighbor coupled phase oscillators. The method is best suited for chains with strong disorder in the intrinsic frequencies and coupling strengths. The results are compared with numerical simulations of the chain dynamics and good agreement in several characteristics is found. We apply the renormalization group and simulations to Lorentzian distributions of intrinsic frequencies and couplings and investigate the statistics of the resultant cluster sizes and frequencies, as well as the dependence of the characteristic cluster length upon parameters of these Lorentzian distributions.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Renormalization group approach on nanostructured systems
    Yan, XH
    Zhang, LD
    Duan, ZP
    Yang, QB
    CHINESE PHYSICS LETTERS, 1997, 14 (04): : 291 - 294
  • [32] Renormalization group approach to exact sampling
    Chanal, Cedric
    Krauth, Werner
    PHYSICAL REVIEW LETTERS, 2008, 100 (06)
  • [33] Renormalization group approach to anisotropic superconductivity
    Roldan, R.
    Tsai, Shan-Wen
    Lopez-Sancho, M. P.
    PHYSICAL REVIEW B, 2009, 79 (22)
  • [34] The renormalization group approach to the confining string
    Alvarez, E
    Gómez, C
    NUCLEAR PHYSICS B, 2000, 574 (1-2) : 153 - 168
  • [35] Renormalization group approach to spontaneous stochasticity
    Eyink, Gregory L.
    Bandak, Dmytro
    PHYSICAL REVIEW RESEARCH, 2020, 2 (04):
  • [36] Examination of the pseudospin symmetry for the relativistic harmonic oscillator with the similarity renormalization group
    Shi, Min
    Li, Dong-Peng
    Chen, Shou-Wan
    Guo, Jian-You
    PHYSICAL REVIEW C, 2014, 90 (03):
  • [37] Lie-group approach to perturbative renormalization group method
    Goto, S
    Masutomi, Y
    Nozaki, K
    PROGRESS OF THEORETICAL PHYSICS, 1999, 102 (03): : 471 - 497
  • [38] Renormalization group approach to generalized cosmological models
    Ibanez, J.
    Jhingan, S.
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2007, 46 (10) : 2313 - 2325
  • [39] Renormalization-group approach to the vulcanization transition
    Peng, WQ
    Goldbart, PM
    PHYSICAL REVIEW E, 2000, 61 (04) : 3339 - 3357
  • [40] On the Renormalization Group Approach to Perturbation Theory for PDEs
    Abou Salem, Walid K.
    ANNALES HENRI POINCARE, 2010, 11 (06): : 1007 - 1021