Computational Study of a Nanobiosensor: A Single-Walled Carbon Nanotube Functionalized with the Coxsackie-Adenovirus Receptor

被引:24
|
作者
Johnson, Robert R. [1 ]
Rego, Blake Jon [3 ]
Johnson, A. T. Charlie [1 ]
Klein, Michael L. [2 ]
机构
[1] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA
[2] Univ Penn, Dept Chem, Philadelphia, PA 19104 USA
[3] Columbia Univ, Fu Fdn, Sch Engn & Appl Sci, New York, NY 10027 USA
来源
JOURNAL OF PHYSICAL CHEMISTRY B | 2009年 / 113卷 / 34期
关键词
MOLECULAR-DYNAMICS; DNA; PROTEINS; WATER; SIMULATION; MECHANISM; BINDING;
D O I
10.1021/jp901999a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Combining single-walled carbon nanotubes (CNT) with biological molecules provides a route to novel nanoscale materials with many promising applications in nanotechnology and nanomedicine. Recent experiments show that CNTs covalently functionalized with the coxsackie-adenovirus receptor (CAR) serve as biosensors capable of specifically recognizing Knob proteins from the adenovirus capsid. These experiments suggest that CAR retains its biologically active form when bound to CNT, but a detailed understanding of the structural changes that occur within CAR after CNT attachment is lacking. To address this, we have performed all-atom classical molecular dynamics (MD) simulations of CAR and the CAR-Knob complex in aqueous solution alone and also when covalently linked to CNT. The MD results show that the CNT damps structural fluctuations in CAR and reduces the internal mobility of the protein. However, CNT induces very little structural deformation and does not affect CAR's ability to specifically bind Knob. This MD study verifies that CAR retains its biological functionality when attached to CNT and provides a computational approach to rationalize nanobiosensing devices.
引用
收藏
页码:11589 / 11593
页数:5
相关论文
共 50 条
  • [41] Single-walled carbon nanotube network ultramicroelectrodes
    Dumitrescu, Ioana
    Unwin, Patrick R.
    Wilson, Neil R.
    Macpherson, Julie V.
    ANALYTICAL CHEMISTRY, 2008, 80 (10) : 3598 - 3605
  • [42] Single-walled carbon nanotube as an effective quencher
    Zhu, Zhi
    Yang, Ronghua
    You, Mingxu
    Zhang, Xiaoling
    Wu, Yanrong
    Tan, Weihong
    ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2010, 396 (01) : 73 - 83
  • [43] Impedance of Single-Walled Carbon Nanotube Fibers
    Ksenevich, V. K.
    Gorbachuk, N. I.
    Poklonski, N. A.
    Samuilov, V. A.
    Kozlov, M. E.
    Wieck, A. D.
    FULLERENES NANOTUBES AND CARBON NANOSTRUCTURES, 2012, 20 (4-7) : 434 - 438
  • [44] Single-walled 4 Å carbon nanotube arrays
    N. Wang
    Z. K. Tang
    G. D. Li
    J. S. Chen
    Nature, 2000, 408 : 50 - 51
  • [45] Single-walled carbon nanotube growth on glass
    Bae, Eun Ju
    Min, Yo-Sep
    Kim, Unjeong
    Park, Wanjun
    NANOTECHNOLOGY, 2007, 18 (01)
  • [46] Chaos in an embedded single-walled carbon nanotube
    Hu, Weipeng
    Deng, Zichen
    Wang, Bo
    Ouyang, Huajiang
    NONLINEAR DYNAMICS, 2013, 72 (1-2) : 389 - 398
  • [47] Smallest freestanding single-walled carbon nanotube
    Hayashi, T
    Kim, YA
    Matoba, T
    Esaka, M
    Nishimura, K
    Tsukada, T
    Endo, M
    Dresselhaus, MS
    NANO LETTERS, 2003, 3 (07) : 887 - 889
  • [48] Exciton in twisted single-walled carbon nanotube
    Lu, Yan
    Liu, Hong
    Gu, Bing
    Duan, Wenhui
    Luo, Chenglin
    PHYSICA STATUS SOLIDI C: CURRENT TOPICS IN SOLID STATE PHYSICS, VOL 8, NO 4, 2011, 8 (04): : 1190 - 1193
  • [49] Optimal helicity of single-walled carbon nanotube
    Zhang, SL
    PHYSICS LETTERS A, 2001, 285 (3-4) : 207 - 211
  • [50] Exciton distribution on single-walled carbon nanotube
    Y. Lü
    H. Liu
    B. Gu
    The European Physical Journal B, 2010, 74 : 499 - 506