Multistability, homoclinic clamping, and chaos in nonlinear quadratic distributed feedback systems

被引:7
|
作者
Buryak, AV [1 ]
Towers, I
Trillo, S
机构
[1] Australian Def Force Acad, Sch Math & Stat, Canberra, ACT 2600, Australia
[2] Australian Natl Univ, RSPHysSE, Ctr Opt Sci, Canberra, ACT 0200, Australia
[3] Univ Ferrara, Dept Engn, I-44100 Ferrara, Italy
基金
澳大利亚研究理事会;
关键词
optical chaos; power clamping; multistability;
D O I
10.1016/S0375-9601(00)00124-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate the spatial field dynamics in nonlinear quadratic media with a periodic Bragg grating. Two different cascading limits lead to the possibility of strong multistability and frustrated transmission which are described analytically and numerically. Tuning the nonlinear wavevector mismatch closer to resonance we observe the transition to a chaotic regime. (C) 2000 Published by Elsevier Science B.V. All rights reserved.
引用
收藏
页码:319 / 325
页数:7
相关论文
共 50 条
  • [21] Chaos and cooperation in nonlinear pictorial feedback systems 1: Experiments
    Häusler, Gerd
    Seckmeyer, G.
    Weiss, Thomas
    Applied Optics, 1986, 25 (24) : 4656 - 4663
  • [22] The stability analysis of systems with nonlinear feedback expressed by a quadratic program
    Li, Guang
    Heath, William P.
    Lennox, Barry
    PROCEEDINGS OF THE 45TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-14, 2006, : 4247 - 4252
  • [23] Generalized feedback approach to singular quadratic optimization of nonlinear systems
    Orlov, Y
    PROCEEDINGS OF THE 35TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-4, 1996, : 1623 - 1627
  • [24] The Quadratic-Quadratic Regulator Problem: Approximating feedback controls for quadratic-in-state nonlinear systems
    Borggaard, Jeff
    Zietsman, Lizette
    2020 AMERICAN CONTROL CONFERENCE (ACC), 2020, : 818 - 823
  • [25] Distributed Estimation for Feedback-Linearizable Nonlinear Systems
    Mekhail, Matteo
    Battilotti, Stefano
    2016 EUROPEAN CONTROL CONFERENCE (ECC), 2016, : 2521 - 2526
  • [26] CHAOS AND COOPERATION IN NONLINEAR PICTORIAL FEEDBACK-SYSTEMS .3. QUANTIZED FEEDBACK-SYSTEMS
    HAUSLER, G
    SECKMEYER, G
    WEISS, T
    APPLIED OPTICS, 1986, 25 (24): : 4668 - 4672
  • [27] Nonlinear Feedback Models of Hysteresis BACKLASH, BIFURCATION, AND MULTISTABILITY
    Oh, Jinhyoung
    Drincic, Bojana
    Bernstein, Dennis S.
    IEEE CONTROL SYSTEMS MAGAZINE, 2009, 29 (01): : 100 - 119
  • [28] Multistability and chaos in a semiconductor microwave device with time-delay feedback
    Shiau, YH
    Peng, YF
    Cheng, YC
    Hu, CK
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2003, 72 (04) : 801 - 804
  • [29] Computational chaos in the nonlinear Schrodinger equation without homoclinic crossings
    Ablowitz, MJ
    Herbst, BM
    Schober, CM
    PHYSICA A, 1996, 228 (1-4): : 212 - 235
  • [30] Adaptive State Observers for Incrementally Quadratic Nonlinear Systems with Application to Chaos Synchronization
    Zhang, Hongzhi
    Zhang, Wei
    Zhao, Younan
    Ji, Mingming
    Huang, Lixin
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2020, 39 (03) : 1290 - 1306