Margin calibration in SVM class-imbalanced learning

被引:52
|
作者
Yang, Chan-Yun [1 ]
Yang, Jr-Syu [2 ]
Wang, Jian-Jun [3 ]
机构
[1] Technol & Sci Inst No Taiwan, Dept Mech Engn, Taipei 11202, Taiwan
[2] Tamkang Univ, Dept Mech & Electromech Engn, Tamsui 25137, Taipei County, Taiwan
[3] Southwest Univ, Sch Math & Stat, Chongqing 400715, Peoples R China
关键词
Margin; Cost-sensitive learning; Class-imbalanced learning; Support vector machines; Classification; SUPPORT VECTOR MACHINES; CLASSIFICATION; KERNEL; CONSISTENCY;
D O I
10.1016/j.neucom.2009.08.006
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Imbalanced dataset learning is an important practical issue in machine learning, even in support vector machines (SVMs). In this study, a well known reference model for solving the problem proposed by Veropoulos et al., is first studied. From the aspect of loss function, the reference cost sensitive prototype is identified as a penalty-regularized model. Intuitively, the loss function can change not only the penalty but also the margin to recover the biased decision boundary. This study focuses mainly on the effect from the margin and then extends the model to a more general modification. As proposed in the prototype, the modification first adopts an inversed proportional regularized penalty to re-weight the imbalanced classes. In addition to the penalty regularization, the modification then employs a margin compensation to lead the margin to be lopsided, which enables the decision boundary drift. Two regularization factors, the penalty and margin. are hence suggested for achieving an unbiased classification. The margin compensation, associating with the penalty regularization, is here utilized to calibrate and refine the biased decision boundary to further reduce the bias. With the area under the receiver operating characteristic curve (AuROC) for examining the performance, the modification shows relative higher scores than the reference model, even though the optimal performance is achieved by the reference model. Some useful characteristics found empirically are also included, which may be convenient for the future applications. All the theoretical descriptions and experimental validations show the proposed model's potential to compete for highly unbiased accuracy in a complex imbalanced dataset. (C) 2009 Elsevier B.V. All rights reserved.
引用
下载
收藏
页码:397 / 411
页数:15
相关论文
共 50 条
  • [31] Methods for class-imbalanced learning with support vector machines: a review and an empirical evaluation
    Rezvani, Salim
    Pourpanah, Farhad
    Lim, Chee Peng
    Wu, Q. M. Jonathan
    Soft Computing, 2024, 28 (20) : 11873 - 11894
  • [32] Learning SVM with weighted maximum margin criterion for classification of imbalanced data
    Zhao, Zhuangyuan
    Zhong, Ping
    Zhao, Yaohong
    MATHEMATICAL AND COMPUTER MODELLING, 2011, 54 (3-4) : 1093 - 1099
  • [33] Exploring of clustering algorithm on class-imbalanced data
    Li Xuan
    Chen Zhigang
    Yang Fan
    PROCEEDINGS OF THE 2013 8TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE & EDUCATION (ICCSE 2013), 2013, : 89 - 93
  • [34] Active Broad-Transfer Learning Algorithm for Class-Imbalanced Fault Diagnosis
    Liu, Guokai
    Shen, Weiming
    Gao, Liang
    Kusiak, Andrew
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [35] FedIIC: Towards Robust Federated Learning for Class-Imbalanced Medical Image Classification
    Wu, Nannan
    Yu, Li
    Yang, Xin
    Cheng, Kwang-Ting
    Yan, Zengqiang
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2023, PT II, 2023, 14221 : 692 - 702
  • [36] A Class-Imbalanced Deep Learning Fall Detection Algorithm Using Wearable Sensors
    Zhang, Jing
    Li, Jia
    Wang, Weibing
    SENSORS, 2021, 21 (19)
  • [37] Active Broad-Transfer Learning Algorithm for Class-Imbalanced Fault Diagnosis
    Liu, Guokai
    Shen, Weiming
    Gao, Liang
    Kusiak, Andrew
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [38] Parameter-Free Loss for Class-Imbalanced Deep Learning in Image Classification
    Du, Jie
    Zhou, Yanhong
    Liu, Peng
    Vong, Chi-Man
    Wang, Tianfu
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 34 (06) : 3234 - 3240
  • [39] Polarimetry-Inspired Contrastive Learning for Class-Imbalanced PolSAR Image Classification
    Kuang, Zuzheng
    Bi, Haixia
    Li, Fan
    Xu, Chen
    Sun, Jian
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 19
  • [40] ABC: Auxiliary Balanced Classifier for Class-Imbalanced Semi-Supervised Learning
    Lee, Hyuck
    Shin, Seungjae
    Kim, Heeyoung
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34