Simple computation of ignition voltage of self-sustaining gas discharges

被引:7
|
作者
Almeida, P. G. C. [1 ,2 ]
Almeida, R. M. S. [1 ,2 ]
Ferreira, N. G. C. [1 ,2 ]
Naidis, G., V [3 ]
Benilov, M. S. [1 ,2 ]
机构
[1] Univ Madeira, Fac Ciencias Exatas & Engn, Dept Fis, P-9000 Funchal, Portugal
[2] Univ Lisbon, Inst Plasmas & Fusao Nucl, Inst Super Tecn, P-1049001 Lisbon, Portugal
[3] Russian Acad Sci, Joint Inst High Temp, Moscow 125412, Russia
来源
PLASMA SOURCES SCIENCE & TECHNOLOGY | 2020年 / 29卷 / 12期
关键词
gas discharge modelling; discharge ignition; self-sustainment condition; breakdown; SURFACE FLASHOVER; AIR;
D O I
10.1088/1361-6595/abbf91
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A robust, fast, and accurate numerical method is proposed for finding the voltage of the ignition of DC self-sustaining gas discharges in a wide range of conditions. The method is based on physical grounds and builds up from the idea that the ignition of a self-sustaining gas discharge should be associated with a resonance that would occur in a non-self-sustained discharge in the same electrode configuration. Examples of the application of the method are shown for various configurations: parallel-plate discharge, coaxial and wire-to-plane corona discharges, and a discharge along a dielectric surface. The results conform to the conventional Townsend breakdown condition for the parallel-plate configuration and are in good agreement with existing experimental data for the other configurations. The method has the potential of providing a reference point for optimization of the hold-off capability of high-power switchgear operating in low-frequency fields.
引用
下载
收藏
页数:6
相关论文
共 50 条
  • [21] On Self-Sustaining Fracture Waves
    Genady. P. Cherepanov
    Ivan E. Esparragoza
    International Journal of Fracture, 2007, 144 : 197 - 202
  • [22] Self-sustaining robotic systems
    Colombano, SP
    Shen, WM
    AUTONOMOUS ROBOTS, 2006, 20 (02) : 83 - 84
  • [23] Self-sustaining robotic systems
    Silvano P. Colombano
    Wei-Min Shen
    Autonomous Robots, 2006, 20 : 83 - 84
  • [24] Progress of the Self-sustaining Magnetometer
    Wang, S. G.
    Xu, C.
    Feng, V. V.
    Zhao, L.
    Wang, L. J.
    2017 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2017,
  • [25] Self-sustaining thermophotonic circuits
    Zhao, Bo
    Buddhiraju, Siddharth
    Santhanam, Parthiban
    Chen, Kaifeng
    Fan, Shanhui
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2019, 116 (24) : 11596 - 11601
  • [26] Self-sustaining discharges in needle-to-plane geometry with hundreds of microns electrode gaps
    Yang, W. M.
    Zhu, R.
    Zhang, C.
    Liu, B. Y.
    JOURNAL OF ELECTROSTATICS, 2017, 87 : 236 - 242
  • [27] SELF-SUSTAINING INTENSE VORTICES
    CARRIER, G
    FENDELL, F
    MITCHELL, J
    BRONSTEIN, M
    PHYSICA D, 1994, 77 (1-3): : 77 - 96
  • [28] Radiation transport in kinetic simulations and the influence of photoemission on electron current in self-sustaining discharges
    Fierro, Andrew
    Moore, Chris
    Scheiner, Brett
    Yee, Benjamin T.
    Hopkins, Matthew M.
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2017, 50 (06)
  • [29] Study of the self-sustaining discharge gas sensor with a carbon nanotube cathode
    Li, X
    Bai, P
    Liu, JH
    Zhu, CC
    SURFACE AND INTERFACE ANALYSIS, 2004, 36 (5-6) : 474 - 477
  • [30] A minimal model of self-sustaining turbulence
    Thomas, Vaughan L.
    Farrell, Brian F.
    Ioannou, Petros J.
    Gayme, Dennice F.
    PHYSICS OF FLUIDS, 2015, 27 (10)