Acoustics and stability of fluid flow in a periodic elastic structure

被引:0
|
作者
Grinfeld, MA
Norris, AN
机构
[1] Dept. of Mech. and Aerosp. Eng., Rutgers University, Piscataway
关键词
D O I
10.1006/jfls.1997.0093
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
A fluid Bows horizontally through a fluid-structure system comprising alternating elastic solid and liquid constituents arranged periodically in the vertical direction. An exact analysis is performed to consider the existence and stability of small acoustic waves and disturbances. The presence of the flow introduces the possibility of flow-induced Butter. Unstable waves are generally possible for M of order unity, M being the Mach number relative to the speed of shear waves in the solid. Instabilities can appear for much lower values for antisymmetric flexural type motion. In that case it is found that a critical wavenumber exists, indicating that the layered system is inherently unstable to long wavelength disturbances. (C) 1997 Academic Press Limited.
引用
收藏
页码:525 / 533
页数:9
相关论文
共 50 条
  • [31] Numerical Simulation of an Elastic Structure Behavior under Transient Fluid Flow Excitation
    Afanasyeva, Irina N.
    Lantsova, Irina Yu.
    YOUTH, SCIENCE, SOLUTIONS: IDEAS AND PROSPECTS (YSSIP-2016), 2017, 1800
  • [32] Fluid-structure coupling of linear elastic model with compressible flow models
    Herty, Michael
    Mueller, Siegfried
    Gerhard, Nils
    Xiang, Gaoming
    Wang, Bing
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2018, 86 (06) : 365 - 391
  • [33] Flow acoustics and linearized equations for ideal barotropic fluid flows
    Deryabin, MV
    Willatzen, M
    JOURNAL OF MATHEMATICAL PHYSICS, 2006, 47 (04)
  • [34] PERIODIC FLOW OF A VISCOUS-FLUID SUPERPOSED ON STEADY FLOW IN AN ORTHOTROPIC INITIALLY STRESSED ELASTIC TUBE - DETERMINATION OF FLUID VELOCITIES AND DISPLACEMENT COMPONENTS OF WALL
    SCHWERDT, H
    CONSTANTINESCO, A
    BIORHEOLOGY, 1976, 13 (01) : 7 - 20
  • [35] A unifying model for fluid flow and elastic solid deformation: A novel approach for fluid-structure interaction
    Bordere, S.
    Caltagirone, J. -P.
    JOURNAL OF FLUIDS AND STRUCTURES, 2014, 51 : 344 - 353
  • [36] Homogenization of the fluid–structure interaction in acoustics of porous media perfused by viscous fluid
    Eduard Rohan
    Salah Naili
    Zeitschrift für angewandte Mathematik und Physik, 2020, 71
  • [37] Separation method of the periodic waves for viscous fluid flow in elastic conduits: non-linear case
    Ghouli, A
    Naciri, JK
    Zagzoule, M
    Touhami, MO
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE II FASCICULE B-MECANIQUE PHYSIQUE CHIMIE ASTRONOMIE, 1997, 325 (02): : 61 - 68
  • [38] Rimming flow of a weakly elastic fluid
    Fomin, S.
    Shankar, R.
    Danes, N.
    Yasuda, A.
    Chugunov, V.
    THEORETICAL AND COMPUTATIONAL FLUID DYNAMICS, 2014, 28 (05) : 485 - 498
  • [39] Rimming flow of a weakly elastic fluid
    S. Fomin
    R. Shankar
    N. Danes
    A. Yasuda
    V. Chugunov
    Theoretical and Computational Fluid Dynamics, 2014, 28 : 485 - 498
  • [40] Viscous fluid flow in an elastic pipeline
    Volobuev A.N.
    Tolstonogov A.P.
    Russ. Aeronaut., 2008, 4 (369-376): : 369 - 376