A topological transformation group without non-trivial equivariant compactifications

被引:3
|
作者
Pestov, Vladimir G. [1 ,2 ]
机构
[1] Univ Ottawa, Dept Math & Stat, 585 King Edward Ave, Ottawa, ON K1N 6N5, Canada
[2] Univ Fed Santa Catarina, Dept Matemat, BR-8800900 Florianopolis, SC, Brazil
关键词
Topological transformation group; Equivariant compactification; SPACE; UNIVERSAL; URYSOHN;
D O I
10.1016/j.aim.2017.02.023
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
There is a countable metrizable group acting continuously on the space of rationals in such a way that the only equivariant compactification of the space is a singleton. This is obtained by a recursive application of a construction due to Megrelishvili, which is a metric fan equipped with a certain group of homeomorphisms. The question of existence of a topological transformation group with the property in the title was asked by Yu.M. Smirnov in the 1980s. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:1 / 17
页数:17
相关论文
共 50 条
  • [21] KLEIN-GORDON EQUATIONS WITH NON-TRIVIAL GROUP
    ZHIBER, AV
    SHABAT, AB
    DOKLADY AKADEMII NAUK SSSR, 1979, 247 (05): : 1103 - 1107
  • [22] Trivial and non-trivial superconductivity in dsDNA
    Simchi, H.
    PHYSICS LETTERS A, 2018, 382 (35) : 2489 - 2492
  • [23] Simple non-trivial designs with an arbitrary automorphism group
    Tuan, ND
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2002, 100 (02) : 403 - 408
  • [24] In Pursuit of the Non-Trivial
    Caret, Colin R.
    EPISTEME-A JOURNAL OF INDIVIDUAL AND SOCIAL EPISTEMOLOGY, 2021, 18 (02): : 282 - 297
  • [25] A non-trivial junction
    Benjamin Heinrich
    Nature Nanotechnology, 2018, 13 : 874 - 874
  • [26] Tending to the Non-Trivial
    Kordes, Urban
    PRIMERJALNA KNJIZEVNOST, 2012, 35 (02): : 179 - 191
  • [27] NON-TRIVIAL PURSUITS
    CANBY, ET
    AUDIO, 1985, 69 (03): : 20 - &
  • [28] Equivariant vector fields on non-trivial SOn-torsors and differential Galois theory
    Juan, Lourdes
    Ledet, Arne
    JOURNAL OF ALGEBRA, 2007, 316 (02) : 735 - 745
  • [29] COUNTABLY COMPACT GROUPS WITHOUT NON-TRIVIAL CONVERGENT SEQUENCES
    Hrusak, M.
    Van Mill, J.
    Ramos-Garcia, U. A.
    Shelah, S.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 374 (02) : 1277 - 1296
  • [30] Trivial stable structures with non-trivial reducts
    Evans, DM
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2005, 72 : 351 - 363