The crossover between lasing and polariton condensation in optical microcavities

被引:20
|
作者
Szymanska, MH
Littlewood, PB
机构
[1] Univ Cambridge, Cavendish Lab, Dept Phys, Cambridge CB3 0HE, England
[2] Bell Labs, Lucent Technol, Murray Hill, NJ 07974 USA
关键词
optical properties; phase transition;
D O I
10.1016/S0038-1098(02)00453-2
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
We study a model of a photon mode dipole-coupled to a medium of two-level oscillators in a microcavity in the presence of dephasing processes introduced by coupling to external baths. Decoherence processes can be classified as pair-breaking or non-pair-breaking in analogy with magnetic or non-magnetic impurities in superconductors. In the absence of dephasing, the ground state of the model is a polariton condensate with a gap in the excitation spectrum. Increase of the pair-breaking parameter gamma reduces the gap, which becomes zero at a critical value gamma(Cl); for large gamma, the conventional laser regime is obtained in a way that demonstrates its close analogy to a gapless superconductor. In contrast, weak non-pair-breaking processes have no qualitative effect on the condensate or the existence of a gap, although they lead to inhomogeneous broadening of the excitations. (C) 2002 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:103 / 107
页数:5
相关论文
共 50 条
  • [21] Polariton lasing due to the exciton-electron scattering in semiconductor microcavities
    Malpuech, G
    Kavokin, A
    Di Carlo, A
    Baumberg, JJ
    Compagnone, F
    Lugli, P
    Zamfirescu, M
    PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2002, 190 (01): : 181 - 186
  • [22] Crossover from polariton lasing to exciton lasing in a strongly coupled ZnO microcavity
    Lai, Ying-Yu
    Chou, Yu-Hsun
    Lan, Yu-Pin
    Lu, Tien-Chang
    Wang, Shing-Chung
    Yamamoto, Yoshihisa
    SCIENTIFIC REPORTS, 2016, 6
  • [23] Nano-second exciton-polariton lasing in organic microcavities
    Putintsev, A.
    Zasedatelev, A.
    McGhee, K. E.
    Cookson, T.
    Georgiou, K.
    Sannikov, D.
    Lidzey, D. G.
    Lagoudakis, P. G.
    APPLIED PHYSICS LETTERS, 2020, 117 (12)
  • [24] Role of the stress trap in the polariton quasiequilibrium condensation in GaAs microcavities
    Balili, R.
    Nelsen, B.
    Snoke, D. W.
    Pfeiffer, L.
    West, K.
    PHYSICAL REVIEW B, 2009, 79 (07):
  • [25] Polariton dynamics and Bose-Einstein condensation in semiconductor microcavities
    Porras, D
    Ciuti, C
    Baumberg, JJ
    Tejedor, C
    PHYSICAL REVIEW B, 2002, 66 (08): : 853041 - 8530411
  • [26] Ultraviolet lasing behavior in ZnO optical microcavities
    Dong, Hongxing
    Zhou, Beier
    Li, Jingzhou
    Zhan, Jingxin
    Zhang, Long
    JOURNAL OF MATERIOMICS, 2017, 3 (04) : 255 - 266
  • [27] Efficient Anisotropic Polariton Lasing Using Molecular Conformation and Orientation in Organic Microcavities
    Le Roux, Florian
    Mischok, Andreas
    Bradley, Donal D. C.
    Gather, Malte C.
    ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (46)
  • [28] Polariton-polariton scattering and the non-equilibrium condensation of exciton polaritons in semiconductor microcavities
    Kulakovskij, V.D.
    Krizhanovskij, D.N.
    Tartakovskij, A.I.
    Gippius, N.A.
    Tikhodeev, S.G.
    Uspekhi Fizicheskikh Nauk, 2003, 173 (09): : 995 - 999
  • [29] Estimating the conditions for polariton condensation in organic thin-film microcavities
    Bittner, Eric R.
    Silva, Carlos
    JOURNAL OF CHEMICAL PHYSICS, 2012, 136 (03):
  • [30] Optical circuits based on polariton neurons in semiconductor microcavities
    Liew, T. C. H.
    Kavokin, A. V.
    Shelykh, I. A.
    PHYSICAL REVIEW LETTERS, 2008, 101 (01)